Math 250 Summer 2024 Exam 2

NAME:

1. 10 pts. Solve $(y^2 + 2xy)dx - x^2dy = 0$ by finding an integrating factor of the form

$$\exp\left[\int \left(\frac{\partial M/dy - \partial N/dx}{N}\right) dx\right] \quad \text{or} \quad \exp\left[\int \left(\frac{\partial N/dx - \partial M/dy}{M}\right) dy\right].$$

2. 10 pts. Solve the differential equation $x^2y'' + (y')^2 = 0$ using the reduction of order method.

3. 10 pts. Solve the initial-value problem using the reduction of order method:

$$y'' + yy' = 0$$
, $y(0) = 1$, $y'(0) = -1$.

4. 10 pts. each Find the general solution to the differential equation.
(a) y" + 4y' - y = 0
(b) 2y" - 3y' + 4y = 0

5. 15 pts. Solve the initial-value problem by the method of undetermined coefficients:

$$y'' + y' + y = \sin x$$
, $y(1) = 1$, $y'(1) = 1$.

6. 15 pts. Use the method of variation of parameters to find a particular solution to

$$y'' + 2y' + 5y = e^{-x} \sec 2x,$$

then find the general solution.

7. 10 pts. One solution to xy'' - (2x+1)y' + (x+1)y = 0 is $y_1(x) = e^x$. Find the general solution to the differential equation.

Method of Undetermined Coefficients. Let $P_m(x)$ be a nonzero polynomial of degree m, and let $y_p(x)$ denote a particular solution to $a_n y^{(n)} + \cdots + a_1 y' + a_0 y = f(x)$.

1. If $f(x) = P_m(x)e^{\alpha x}$, then

$$y_p(x) = x^s e^{\alpha x} \sum_{k=0}^m A_k x^k,$$

where s = 0 if α is not a root of the auxiliary equation, otherwise s equals the multiplicity of α as a root of the auxiliary equation.

2. If $f(x) = P_m(x)e^{\alpha x}\cos\beta x$ or $f(x) = P_m(x)e^{\alpha x}\sin\beta x$ for $\beta \neq 0$, then

$$y_p(x) = x^s e^{\alpha x} \left(\cos \beta x \sum_{k=0}^m A_k x^k + \sin \beta x \sum_{k=0}^m B_k x^k \right),$$

where s = 0 if $\alpha + i\beta$ is not a root of the auxiliary equation, otherwise s equals the multiplicity of $\alpha + i\beta$ as a root of the auxiliary equation.

Method of Variation of Parameters (2nd-Order Case).

For y'' + p(x)y' + q(x) = f(x),

$$y_p(x) = y_1(x) \int \frac{-f(x)y_2(x)}{y_1(x)y_2'(x) - y_1'(x)y_2(x)} dx + y_2(x) \int \frac{f(x)y_1(x)}{y_1(x)y_2'(x) - y_1'(x)y_2(x)} dx$$

Some Most Excellent Formulae.

1.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, \text{ for } a \in (0, \infty)$$

2.
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + c, \text{ for } a \neq 0$$

3.
$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \left|\frac{x}{a}\right| + c, \text{ for } a \in (0, \infty)$$

4.
$$\int \tan x \, dx = -\ln |\cos x| + c = \ln |\sec x| + c$$

5.
$$\int \cot x \, dx = \ln |\sin x| + c$$

6.
$$\int \sec x \, dx = \ln |\sec x + \tan x| + c$$

7.
$$\int \csc x \, dx = -\ln |\csc x + \cot x| + c$$