Math 250 Summer 2022 Exam 4

NAME:

1. 20 pts. Solve the system using operator notation and elimination:

$$\begin{cases} 2\frac{dx}{dt} - 5x + \frac{dy}{dt} = e^t\\ \frac{dx}{dt} - x + \frac{dy}{dt} = 5e^t \end{cases}$$

2. 20 pts. Solve the system by the method of Laplace transforms:

$$\begin{cases} \frac{dx}{dt} - 2y = e^t \\ 8x - \frac{dy}{dt} = t, \end{cases}$$

where x(0) = 1 and y(0) = 1.

- 3. 20 pts. There are three tanks, A, B, and C, each with 100 L of a potassium chloride (KCl) solution. At time t = 0 there are x_0 , y_0 , and z_0 kg of KCl in A, B, and C, respectively. Tank A is linked to B by two pipes P₁ and P₂, and B is linked to C by two pipes P₃ and P₄. Also, A has an inlet pipe and C has a drain. The inlet pipe is pumping 4 L/min of pure water into A, and the drain is removing 4 L/min of KCl solution from C. Meanwhile, P₁ is moving 6 L/min from A to B, and P₂ is moving 2 L/min from B to A. Finally, P₃ is moving 5 L/min from B to C, and P₄ is moving 1 L/min from C to B. Letting x(t), y(t), and z(t) be the mass of KCl at time t in A, B, and C, set up a system of differential equations that models the number of kilograms of KCl in each tank over time. Do not solve the system!
- 4. 20 pts.] Two walls, W_1 and W_2 , face each other across a smooth floor. A spring with stiffness k_1 is attached to W_1 on one end and a mass m_1 (on the floor) at the other end. A second spring with stiffness k_2 is attached to mass m_1 on one end and a mass m_2 (also on the floor) at the other end. Finally, a third spring with stiffness k_3 is attached to m_2 on one end and W_2 at the other end. Thus there is a linear arrangement of two masses and three springs on the floor, anchored on either end by a wall. Assuming $x_1 = 0$ and $x_2 = 0$ are the equilibrium positions for mass m_1 and m_2 , respectively, derive a system of differential equations involving functions $x_1(t)$ and $x_2(t)$ which give the positions of m_1 and m_2 over time t. Do not solve the system!
- 5. 20 pts. Obtain terms to order 4, in powers of x, of the particular solution to the IVP

$$(x+2)y''+3y=0, \quad y(0)=0, \quad y'(0)=1.$$

$\frac{2bs}{a^2 + b^2)^2} \qquad s > 0$ $\frac{a^2 - b^2}{a^2 + b^2)^2} \qquad s > 0$
$\frac{a^2}{(a^2+b^2)^2} \qquad \qquad s>0$
-
$\frac{b}{(-a)^2 + b^2} \qquad \qquad s > a$
$\frac{s-a}{(-a)^2+b^2} \qquad \qquad s>a$
$\frac{n!}{(-a)^{n+1}} \qquad \qquad s > a$
$\frac{as}{s}$ $s > 0$
s > 0

$$\mathcal{L}[f'](s) = s\mathcal{L}[f](s) - f(0)$$

$$\mathcal{L}[f''](s) = s^2\mathcal{L}[f](s) - sf(0) - f'(0)$$

$$\mathcal{L}[e^{at}f(t)](s) = \mathcal{L}[f(t)](s - a)$$

$$\mathcal{L}[f(t - a)u(t - a)](s) = e^{-as}\mathcal{L}[f(t)](s)$$

$$\mathcal{L}[g(t)u(t - a)](s) = e^{-as}\mathcal{L}[g(t + a)](s)$$

$$\sin^{2} x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^{2} x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin x \cos y = \frac{1}{2}[\sin(x + y) + \sin(x - y)]$$

$$\cos x \cos y = \frac{1}{2}[\cos(x + y) + \cos(x - y)]$$

$$\sin x \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)]$$