1. 20 pts. Solve the system using operator notation and elimination:

$$
\left\{\begin{array}{l}
2 \frac{d x}{d t}-5 x+\frac{d y}{d t}=e^{t} \\
\frac{d x}{d t}-x+\frac{d y}{d t}=5 e^{t}
\end{array}\right.
$$

2. 20 pts. Solve the system by the method of Laplace transforms:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}-2 y=e^{t} \\
8 x-\frac{d y}{d t}=t
\end{array}\right.
$$

where $x(0)=1$ and $y(0)=1$.
3. 20 pts. There are three tanks, A, B, and C, each with 100 L of a potassium chloride (KCl) solution. At time $t=0$ there are x_{0}, y_{0}, and $z_{0} \mathrm{~kg}$ of KCl in A, B, and C , respectively. Tank A is linked to B by two pipes P_{1} and P_{2}, and B is linked to C by two pipes P_{3} and P_{4}. Also, A has an inlet pipe and C has a drain. The inlet pipe is pumping $4 \mathrm{~L} / \mathrm{min}$ of pure water into A , and the drain is removing $4 \mathrm{~L} / \mathrm{min}$ of KCl solution from C. Meanwhile, P_{1} is moving $6 \mathrm{~L} / \mathrm{min}$ from A to B , and P_{2} is moving $2 \mathrm{~L} / \mathrm{min}$ from B to A . Finally, P_{3} is moving $5 \mathrm{~L} / \mathrm{min}$ from B to C , and P_{4} is moving 1 $\mathrm{L} / \mathrm{min}$ from C to B . Letting $x(t), y(t)$, and $z(t)$ be the mass of KCl at time t in A, B, and C , set up a system of differential equations that models the number of kilograms of KCl in each tank over time. Do not solve the system!
4. 20 pts. Two walls, W_{1} and W_{2}, face each other across a smooth floor. A spring with stiffness k_{1} is attached to W_{1} on one end and a mass m_{1} (on the floor) at the other end. A second spring with stiffness k_{2} is attached to mass m_{1} on one end and a mass m_{2} (also on the floor) at the other end. Finally, a third spring with stiffness k_{3} is attached to m_{2} on one end and W_{2} at the other end. Thus there is a linear arrangement of two masses and three springs on the floor, anchored on either end by a wall. Assuming $x_{1}=0$ and $x_{2}=0$ are the equilibrium positions for mass m_{1} and m_{2}, respectively, derive a system of differential equations involving functions $x_{1}(t)$ and $x_{2}(t)$ which give the positions of m_{1} and m_{2} over time t. Do not solve the system!
5. 20 pts. Obtain terms to order 4 , in powers of x, of the particular solution to the IVP

$$
(x+2) y^{\prime \prime}+3 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

$f(t)$	$\mathcal{L}[f](s)$	$\operatorname{Dom}(\mathcal{L}[f])$
$t \sin b t$	$\frac{2 b s}{\left(s^{2}+b^{2}\right)^{2}}$	$s>0$
$t \cos b t$	$\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}$	$s>0$
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} t^{n}, n=0,1, \ldots$	$\frac{n!}{(s-a)^{n+1}}$	$s>a$
$u(t-a), a \geq 0$	$\frac{e^{-a s}}{s}$	$s>0$
$\delta(t-a), a \geq 0$	$e^{-a s}$	$s>0$
$(f * g)(t)$	$\mathcal{L}[f(t)](s) \mathcal{L}[g(t)](s)$	

$\mathcal{L}\left[f^{\prime}\right](s)=s \mathcal{L}[f](s)-f(0)$
$\mathcal{L}\left[f^{\prime \prime}\right](s)=s^{2} \mathcal{L}[f](s)-s f(0)-f^{\prime}(0)$
$\mathcal{L}\left[e^{a t} f(t)\right](s)=\mathcal{L}[f(t)](s-a)$
$\mathcal{L}[f(t-a) u(t-a)](s)=e^{-a s} \mathcal{L}[f(t)](s)$
$\mathcal{L}[g(t) u(t-a)](s)=e^{-a s} \mathcal{L}[g(t+a)](s)$
$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
$\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
$\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]$
$\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
$\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]$

