Math 250 Summer 2022 Exam 3

NAME:

- 1. 20 pts. Find the general solution to $y' 2y = e^{2x}$ by the method of Laplace transforms by letting y(0) = c for arbitrary constant c.
- 2. 20 pts. Solve the initial-value problem by the method of Laplace transforms:

 $y'' + 4y' - 5y = xe^x$, y(0) = 1, y'(0) = 0.

- 3. A particle exhibits simple harmonic motion. Every 0.4 second it passes through the equilibrium position with a velocity of ± 6 m/s.
 - (a) 15 pts. Set up and solve a differential equation to find the particle's equation of motion. Put the equation in the form $x(t) = A \sin(\omega t + \varphi)$.
 - (b) 5 pts. Find the period, natural frequency, and amplitude of the motion.
- 4. A 0.125 kg object is attached to a spring with stiffness k = 16 N/m. The object is displaced 0.5 m to the right of the equilibrium position (thereby stretching the spring) and given a rightward velocity of $\sqrt{2}$ m/s. There is no damping.
 - (a) 15 pts. Set up and solve a differential equation to find the object's equation of motion. Put the equation in the form $x(t) = A\sin(\omega t + \varphi)$.
 - (b) 5 pts. Find the period, natural frequency, and amplitude of the motion.
 - (c) 5 pts. When does the object first pass through the equilibrium position?
 - (d) 5 pts. What is the object's maximum displacement from the equilibrium position?

f(t)	$\mathcal{L}[f](s)$	$\operatorname{Dom}(\mathcal{L}[f])$
$t\sin bt$	$\frac{2bs}{(s^2+b^2)^2}$	s > 0
$t\cos bt$	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$	s > 0
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}$	s > a
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$	s > a
$e^{at}t^n, n=0,1,\ldots$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$u(t-a), \ a \ge 0$	$\frac{e^{-as}}{s}$	s > 0
$\delta(t-a), \ a \ge 0$	e^{-as}	s > 0
(f * g)(t)	$\mathcal{L}[f(t)](s)\mathcal{L}[g(t)](s)$	s > 0

$$\mathcal{L}[f'](s) = s\mathcal{L}[f](s) - f(0)$$

$$\mathcal{L}[f''](s) = s^2\mathcal{L}[f](s) - sf(0) - f'(0)$$

$$\mathcal{L}[e^{at}f(t)](s) = \mathcal{L}[f(t)](s - a)$$

$$\mathcal{L}[f(t - a)u(t - a)](s) = e^{-as}\mathcal{L}[f(t)](s)$$

$$\mathcal{L}[g(t)u(t - a)](s) = e^{-as}\mathcal{L}[g(t + a)](s)$$

$$\sin^{2} x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^{2} x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin x \cos y = \frac{1}{2}[\sin(x + y) + \sin(x - y)]$$

$$\cos x \cos y = \frac{1}{2}[\cos(x + y) + \cos(x - y)]$$

$$\sin x \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)]$$