1. 20 pts . Find the general solution to $y^{\prime}-2 y=e^{2 x}$ by the method of Laplace transforms by letting $y(0)=c$ for arbitrary constant c.
2. 20 pts . Solve the initial-value problem by the method of Laplace transforms:

$$
y^{\prime \prime}+4 y^{\prime}-5 y=x e^{x}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

3. A particle exhibits simple harmonic motion. Every 0.4 second it passes through the equilibrium position with a velocity of $\pm 6 \mathrm{~m} / \mathrm{s}$.
(a) 15 pts. Set up and solve a differential equation to find the particle's equation of motion. Put the equation in the form $x(t)=A \sin (\omega t+\varphi)$.
(b) 5 pts. Find the period, natural frequency, and amplitude of the motion.
4. A 0.125 kg object is attached to a spring with stiffness $k=16 \mathrm{~N} / \mathrm{m}$. The object is displaced 0.5 m to the right of the equilibrium position (thereby stretching the spring) and given a rightward velocity of $\sqrt{2} \mathrm{~m} / \mathrm{s}$. There is no damping.
(a) 15 pts. Set up and solve a differential equation to find the object's equation of motion. Put the equation in the form $x(t)=A \sin (\omega t+\varphi)$.
(b) 5 pts. Find the period, natural frequency, and amplitude of the motion.
(c) 5 pts. When does the object first pass through the equilibrium position?
(d) 5 pts. What is the object's maximum displacement from the equilibrium position?

$f(t)$	$\mathcal{L}[f](s)$	$\operatorname{Dom}(\mathcal{L}[f])$
$t \sin b t$	$\frac{2 b s}{\left(s^{2}+b^{2}\right)^{2}}$	$s>0$
$t \cos b t$	$\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}$	$s>0$
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} t^{n}, n=0,1, \ldots$	$\frac{n!}{(s-a)^{n+1}}$	$s>a$
$u(t-a), a \geq 0$	$\frac{e^{-a s}}{s}$	$s>0$
$\delta(t-a), a \geq 0$	$e^{-a s}$	$s>0$
$(f * g)(t)$	$\mathcal{L}[f(t)](s) \mathcal{L}[g(t)](s)$	

$\mathcal{L}\left[f^{\prime}\right](s)=s \mathcal{L}[f](s)-f(0)$
$\mathcal{L}\left[f^{\prime \prime}\right](s)=s^{2} \mathcal{L}[f](s)-s f(0)-f^{\prime}(0)$
$\mathcal{L}\left[e^{a t} f(t)\right](s)=\mathcal{L}[f(t)](s-a)$
$\mathcal{L}[f(t-a) u(t-a)](s)=e^{-a s} \mathcal{L}[f(t)](s)$
$\mathcal{L}[g(t) u(t-a)](s)=e^{-a s} \mathcal{L}[g(t+a)](s)$
$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
$\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
$\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]$
$\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
$\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]$

