
Math 250
Summer 2022 Name:
Exam 3

1. 20 pts. Find the general solution to y′ − 2y = e2x by the method of Laplace transforms by letting
y(0) = c for arbitrary constant c.

2. 20 pts. Solve the initial-value problem by the method of Laplace transforms:

y′′ + 4y′ − 5y = xex, y(0) = 1, y′(0) = 0.

3. A particle exhibits simple harmonic motion. Every 0.4 second it passes through the equilibrium
position with a velocity of ±6 m/s.

(a) 15 pts. Set up and solve a differential equation to find the particle’s equation of motion. Put
the equation in the form x(t) = A sin(ωt+ φ).

(b) 5 pts. Find the period, natural frequency, and amplitude of the motion.

4. A 0.125 kg object is attached to a spring with stiffness k = 16 N/m. The object is displaced
0.5 m to the right of the equilibrium position (thereby stretching the spring) and given a rightward
velocity of

√
2 m/s. There is no damping.

(a) 15 pts. Set up and solve a differential equation to find the object’s equation of motion. Put
the equation in the form x(t) = A sin(ωt+ φ).

(b) 5 pts. Find the period, natural frequency, and amplitude of the motion.

(c) 5 pts. When does the object first pass through the equilibrium position?

(d) 5 pts. What is the object’s maximum displacement from the equilibrium position?
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