1. 10 pts . Find a differential equation having $x^{2}+(y+c)^{2}=1+c^{2}$ as a one-parameter family of solutions.
2. 10 pts. Solve the initial-value problem

$$
\frac{d y}{d x}=\frac{\cos x}{3 y^{2}+e^{y}}, \quad y(0)=2 .
$$

3. 10 pts . Solve the homogeneous equation

$$
2 x^{2} \frac{d y}{d x}=x^{2}+y^{2}
$$

Put the solution in explicit form and state the intervals of validity for the solution.
4. 10 pts . Solve the exact equation

$$
2 x+e^{y}+x e^{y} \frac{d y}{d x}=0
$$

leaving the solution in an implicit form (i.e. don't isolate y).
5. 10 pts. Solve the linear initial-value problem

$$
x y^{\prime}-3 y=x^{3}, \quad y(1)=0
$$

writing the solution in explicit form.
6. 10 pts . Solve the Bernoulli equation

$$
y^{\prime}+\frac{3}{x} y=x^{2} y^{2}
$$

7. 15 pts . A tank initially has 500 L of a solution containing 40 kg of isopropyl alcohol. Pure water flows into the tank at the rate of $3 \mathrm{~L} / \mathrm{min}$ while the alcohol solution is drained out at the rate of 2 $\mathrm{L} / \mathrm{min}$. When will there be 25 kg of isopropyl alcohol in the tank?
8. 15 pts . An object with a temperature of $10^{\circ} \mathrm{F}$ is placed in a room where the temperature is $80^{\circ} \mathrm{F}$. After 10 minutes the temperature of the object is $30^{\circ} \mathrm{F}$. What will be the temperature of the object after it has been in the room for 30 minutes?
9. 10 pts . Prove that two functions are linearly dependent on an interval I if one function is a constant multiple of the other on I.

Some Integration Formulas:

$$
\begin{aligned}
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, \quad \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c, \quad \int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left|\frac{x}{a}\right|+c, \\
& \int \tan x d x=\ln |\sec x|+c, \quad \int \cot x d x=\ln |\sin x|+c, \quad \int \sec x d x=\ln |\sec x+\tan x|+c, \\
& \int \csc x d x=-\ln |\csc x+\cot x|+c .
\end{aligned}
$$

