MATH 250 SPRING 2017 EXAM 3

NAME:

1. 10 pts. Given that $y_1 = x^4$ is a solution to

$$x^2y'' - 7xy' + 16y = 0,$$

use reduction of order to find a second solution y_2 that is linearly independent from y_1 .

- 2. Consider the equation $y''' 3y'' + 3y' y = -4e^x$.
 - (a) 10 pts. Use the Method of Undetermined Coefficients to find a particular solution to the equation.
 - (b) 5 pts. Give the general solution to the equation.
- 3. Consider the equation $\frac{1}{4}y'' + y' + y = x^2 2x$.
 - (a) 15 pts. Use the Method of Undetermined Coefficients to find a particular solution to the equation.
 - (b) 5 pts. Give the general solution to the equation.
- 4. $\boxed{20~\mathrm{pts.}}$ Use the Method of Variation of Parameters to find a particular solution to

$$y'' + 3y' + 2y = \sin(e^x),$$

and then find a general solution.

Method of Undetermined Coefficients. Let $P_m(x)$ be a nonzero polynomial of degree m, and let $y_p(x)$ denote a particular solution to $a_n y^{(n)} + \cdots + a_1 y' + a_0 y = f(x)$.

1. If $f(x) = P_m(x)e^{\alpha x}$, then

$$y_p(x) = x^s e^{\alpha x} \sum_{k=0}^m A_k x^k,$$

where s = 0 if α is not a root of the auxiliary equation, otherwise s equals the multiplicity of α as a root of the auxiliary equation.

2. If $f(x) = P_m(x)e^{\alpha x}\cos\beta x$ or $f(x) = P_m(x)e^{\alpha x}\sin\beta x$ for $\beta \neq 0$, then

$$y_p(x) = x^s e^{\alpha x} \left(\cos \beta x \sum_{k=0}^m A_k x^k + \sin \beta x \sum_{k=0}^m B_k x^k \right),$$

where s = 0 if $\alpha + i\beta$ is not a root of the auxiliary equation, otherwise s equals the multiplicity of $\alpha + i\beta$ as a root of the auxiliary equation.

Method of Variation of Parameters (2nd-Order Case).

$$u_1(x) = \frac{1}{a_2} \int \frac{-y_2(x)f(x)}{y_1(x)y_2'(x) - y_1'(x)y_2(x)} dx \quad \text{and} \quad u_2(x) = \frac{1}{a_2} \int \frac{y_1(x)f(x)}{y_1(x)y_2'(x) - y_1'(x)y_2(x)} dx$$

Some Most Excellent Formulae.

1.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a}) + c$$
, for $a \in (0, \infty)$

2.
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$$
, for $a \neq 0$

3.
$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right| + c$$
, for $a \in (0, \infty)$

4.
$$\int \tan x \, dx = -\ln|\cos x| + c = \ln|\sec x| + c$$

$$5. \int \cot x \, dx = \ln|\sin x| + c$$

6.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + c$$

7.
$$\int \csc x \, dx = -\ln|\csc x + \cot x| + c$$