Math 250 Spring 2016 Exam 4

NAME:

- 1. 10 pts. A 1-kilogram mass is attached to a spring whose constant is 16 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation of motion if the mass is initially released from a point 1 meter below the equilibrium position with an upward velocity of 12 m/s.
- 2. 10 pts. Rewrite the expression

$$\sum_{n=2}^{\infty} n(n-1)c_n x^{n-2} - 5\sum_{n=0}^{\infty} c_n x^{n+2}$$

using a single power series whose general term involves x^n .

- 3. 15 pts. Find a power series solution $y = \sum c_n x^n$ for y' = xy by the power series method of §6.1.
- 4. 20 pts. Use the power series method to solve the initial-value problem

$$y'' - 2xy' + 8y = 0$$
, $y(0) = 3$, $y'(0) = 0$.

5. 10 pts. Use the definition of the Laplace transform to find $\mathcal{L}[f]$ for

$$f(t) = \begin{cases} 1, & t \in [0, 8) \\ t, & t \in [8, \infty) \end{cases}$$

- 6. 5 pts. each Use the table provided to find the Laplace transform.
 - (a) $f(t) = -2t^5$
 - (b) $g(t) = (2t 1)^3$
 - (c) $h(t) = e^t \sinh t$

f(t)	$\mathcal{L}[f](s)$	$\operatorname{Dom}(\mathcal{L}[f])$
1	$\frac{1}{s}$	s > 0
t^n	$\frac{n!}{s^{n+1}}$	s > 0
e^{at}	$\frac{1}{s-a}$	s > a
$\sin bt$	$\frac{b}{s^2 + b^2}$	s > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$	s > 0
$\sinh bt$	$\frac{b}{s^2 - b^2}$	
$\cosh bt$	$\frac{s}{s^2 - b^2}$	

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin x \cos y = \frac{1}{2}[\sin(x+y) + \sin(x-y)]$$

$$\cos x \cos y = \frac{1}{2}[\cos(x+y) + \cos(x-y)]$$

$$\sin x \sin y = \frac{1}{2}[\cos(x-y) - \cos(x+y)]$$