NAME:

- 1. Use the Method of Undetermined Coefficients and the Superposition Principle in doing the following.
 - (a) 15 pts. Find a particular solution to

$$y'' + y' + 4y = 2\cosh t,$$

where $\cosh t = \frac{1}{2}(e^t + e^{-t})$, and then find a general solution.

(b) 15 pts. Find the solution to the initial value problem

$$y'' + 2y' + 5y = 4e^{-t}\cos 2t$$
, $y(0) = 1$, $y'(0) = 0$.

2. 15 pts. Use the Method of Variation of Parameters to find a particular solution to

$$y'' - 2y' + y = \frac{e^t}{1 + t^2},$$

and then find a general solution.

- 3. An object weighing 64 pounds stretches a spring 0.32 foot. The mass is initially released from a point 8 inches above the equilibrium position with a downward velocity of 5 ft/s. Find the following.
 - (a) 5 pts. The equation of motion of the object.
 - (b) [5 pts.] The position, velocity, and acceleration of the object at time t=3 s.
 - (c) 5 pts. The amplitude and period of motion.
 - (d) 5 pts. The velocity at the times when the object passes through the equilibrium position.

Method of Undetermined Coefficients. Let $P_m(t)$ be a nonzero polynomial of degree m, and let $y_p(t)$ denote a particular solution to $a_n y^{(n)} + \cdots + a_1 y' + a_0 y = f(t)$.

1. If $f(t) = P_m(t)e^{\alpha t}$, then

$$y_p(t) = t^s e^{\alpha t} \sum_{k=0}^m A_k t^k,$$

where s = 0 if $\alpha + i\beta$ is not a root of the auxiliary equation, otherwise s equals the multiplicity of $\alpha + i\beta$ as a root of the auxiliary equation.

2. If $f(t) = P_m(t)e^{\alpha t}\cos\beta t$ or $f(t) = P_m(t)e^{\alpha t}\sin\beta t$ for $\beta \neq 0$, then

$$y_p(t) = t^s e^{\alpha t} \cos \beta t \sum_{k=0}^m A_k t^k + t^s e^{\alpha t} \sin \beta t \sum_{k=0}^m B_k t^k,$$

where s = 0 if $\alpha + i\beta$ is not a root of the auxiliary equation, otherwise s equals the multiplicity of $\alpha + i\beta$ as a root of the auxiliary equation.

Method of Variation of Parameters.

$$v_1(t) = \frac{1}{a_2} \int \frac{-y_2(t)f(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)} dt \quad \text{and} \quad v_2(t) = \frac{1}{a_2} \int \frac{y_1(t)f(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)} dt$$

Some Most Excellent Formulae.

1.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(\frac{x}{a}) + c$$
, for $a \in (0, \infty)$

2.
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$$
, for $a \neq 0$

3.
$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \left| \frac{x}{a} \right| + c$$
, for $a \in (0, \infty)$

4.
$$\int \tan x \, dx = -\ln|\cos x| + c = \ln|\sec x| + c$$

$$5. \int \cot x \, dx = \ln|\sin x| + c$$

6.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + c$$

7.
$$\int \csc x \, dx = -\ln|\csc x + \cot x| + c$$