Math 250 Spring 2014 Exam 3

NAME:

- 1. Use the Method of Undetermined Coefficients and the Superposition Principle in doing the following.
 - (a) 15 pts. Find a particular solution to

$$y'' + y' + 4y = 2\cosh t,$$

where $\cosh t = \frac{1}{2}(e^t + e^{-t})$, and then find a general solution.

(b) 15 pts. Find the solution to the initial value problem

$$y'' + 2y' + 5y = 4e^{-t}\cos 2t, \quad y(0) = 1, \quad y'(0) = 0.$$

2. 15 pts. Use the Method of Variation of Parameters to find a particular solution to

$$y'' - 2y' + y = \frac{e^t}{1 + t^2},$$

and then find a general solution.

- 3. A 1/8-kg object is attached to a spring with stiffness 16 N/m. The damping constant for the system is 2 N-sec/m. If the object is moved 3/4 m to the left of equilibrium (compressing the spring) and given an initial leftward velocity of 2 m/sec, determine the following.
 - (a) 10 pts. The equation of motion of the object.
 - (b) 10 pts. The object's maximum displacement to the left.
 - (c) 10 pts. The quasiperiod and quasifrequency of the object's motion.

Method of Undetermined Coefficients. Let $P_m(t)$ be a nonzero polynomial of degree m, and let $y_p(t)$ denote a particular solution to $a_2y'' + a_1y' + a_0y = f(t)$.

1. If $f(t) = P_m(t)e^{\alpha t}$, then

$$y_p(t) = t^s e^{\alpha t} \sum_{k=0}^m A_k t^k,$$

where

- (a) s = 0 if α is not a root of $a_2r^2 + a_1r + a_0 = 0$
- (b) s = 1 if α is a single root of $a_2r^2 + a_1r + a_0 = 0$
- (c) s = 2 if α is a double root of $a_2r^2 + a_1r + a_0 = 0$
- 2. If $f(t) = P_m(t)e^{\alpha t}\cos\beta t$ or $f(t) = P_m(t)e^{\alpha t}\sin\beta t$ for $\beta \neq 0$, then

$$y_p(t) = t^s e^{\alpha t} \cos \beta t \sum_{k=0}^m A_k t^k + t^s e^{\alpha t} \sin \beta t \sum_{k=0}^m B_k t^k,$$

where

- (a) s = 0 if $\alpha + \beta i$ is not a root of $a_2r^2 + a_1r + a_0 = 0$ (b) s = 1 if $\alpha + \beta i$ is a root of $a_2r^2 + a_1r + a_0 = 0$

Method of Variation of Parameters.

$$v_1(t) = \frac{1}{a_2} \int \frac{-y_2(t)f(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)} dt \quad \text{and} \quad v_2(t) = \frac{1}{a_2} \int \frac{y_1(t)f(t)}{y_1(t)y_2'(t) - y_1'(t)y_2(t)} dt$$

Some Awesome Formulae.

1.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, \text{ for } a \in (0, \infty)$$

2.
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + c, \text{ for } a \neq 0$$

3.
$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \left|\frac{x}{a}\right| + c, \text{ for } a \in (0, \infty)$$

4.
$$\int \tan x \, dx = -\ln|\cos x| + c = \ln|\sec x| + c$$

5.
$$\int \cot x \, dx = \ln|\sin x| + c$$

6.
$$\int \sec x \, dx = \ln|\sec x + \tan x| + c$$

7.
$$\int \csc x \, dx = -\ln|\csc x + \cot x| + c$$