NAME:

1. 10 pts. Determine for which values of m the function $\varphi(x) = x^m$ is a solution to

$$3x^2\frac{d^2y}{dx^2} + 11x\frac{dy}{dx} - 3y = 0.$$

2. 10 pts. Determine whether the Existence-Uniqueness Theorem implies that the initial value problem

$$\frac{dy}{dx} - 4x^2 = \sqrt[3]{2 - y}, \quad y(-1) = 2,$$

has a unique solution. If not, why not?

3. The velocity v at time t of an object falling in a viscous fluid is modeled by $v' = 1 - v^3/8$, with direction field given below.

- (a) 5 pts. Sketch the solutions with initial conditions v(0) = 0, 2, 4.
- (b) 5 pts. What velocity does the object approach as time increases?
- 4. 10 pts. Use Euler's Method with step size h=0.2 to approximate the solution to the initial value problem

$$y' = \frac{1}{x}(y^2 + y), \quad y(1) = 0$$

at the points x = 1.2, 1.4, 1.6, 1.8.

5. 10 pts. Find the general solution to

$$\frac{1}{y}y' + ye^{\cos x}\sin x = 0.$$

6. 10 pts. Solve the initial value problem

$$\frac{1}{2}y' = \sqrt{y+1}\cos x, \quad y(\pi) = 0.$$

7. 10 pts. Find the general solution to

$$xy' + 3(y+x^2) = \frac{\sin x}{x}.$$

8. 10 pts. Solve the initial value problem

$$t^2 \frac{dx}{dt} + 3tx = t^4 \ln t + 1, \quad x(1) = 0.$$

9. 10 pts. Solve the exact equation

$$\frac{x}{y}y' + (1+\ln y) = 0.$$

A couple trigonometric identities: $\sin(2\theta) = 2\sin\theta\cos\theta$, $\cos(2\theta) = 2\cos^2\theta - 1$.