1. Consider the equation $y^{\prime \prime}+4 y=8 \sin 2 t$.
(a) 10 pts . Find a particular solution to the equation.
(b) 5 pts. Find a general solution to the equation.
2. Consider the equation $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \sin t$.
(a) 15 pts . Find a particular solution to the equation.
(b) 5 pts. Find a general solution to the equation.
3. 15 pts. A $20-\mathrm{kg}$ object is attached to a spring with stiffness $200 \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $140 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. If the object is pulled 0.25 m to the right of equilibrium and given an initial leftward velocity of $1 \mathrm{~m} / \mathrm{sec}$, what is the equation of motion of the object? When will the object first return to its equilibrium position?
4. 15 pts . An $8-\mathrm{kg}$ mass is attached to a spring hanging from the ceiling, thereby causing the spring to stretch 1.96 m upon coming to rest at equilibrium. At time $t=0$, an external force $F(t)=\cos 2 t$ N is applied to the system. The damping constant for the system is $3 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. Determine the steady-state solution for the system.

Method of Undetermined Coefficients. Let $P_{m}(t)$ be a nonzero polynomial of degree m, and let $y_{p}(t)$ denote a particular solution to $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=f(t)$.

1. If $f(t)=P_{m}(t) e^{\alpha t}$, then

$$
y_{p}(t)=t^{s} e^{\alpha t} \sum_{k=0}^{m} A_{k} t^{k}
$$

where
(a) $s=0$ if α is not a root of $a_{2} r^{2}+a_{1} r+a_{0}=0$
(b) $s=1$ if α is a single root of $a_{2} r^{2}+a_{1} r+a_{0}=0$
(c) $s=2$ if α is a double root of $a_{2} r^{2}+a_{1} r+a_{0}=0$
2. If $f(t)=P_{m}(t) e^{\alpha t} \cos \beta t$ or $f(t)=P_{m}(t) e^{\alpha t} \sin \beta t$ for $\beta \neq 0$, then

$$
y_{p}(t)=t^{s} e^{\alpha t} \cos \beta t \sum_{k=0}^{m} A_{k} t^{k}+t^{s} e^{\alpha t} \sin \beta t \sum_{k=0}^{m} B_{k} t^{k}
$$

where
(a) $s=0$ if $\alpha+\beta i$ is not a root of $a_{2} r^{2}+a_{1} r+a_{0}=0$
(b) $s=1$ if $\alpha+\beta i$ is a root of $a_{2} r^{2}+a_{1} r+a_{0}=0$

