MAT 250 Final Spring 2003		i nal 3	DO NOT WRITE ON THIS PAPER (except in the name box to the right). Show all work on blank paper provided. Points may be deducted for insufficient work even if correct answers are given.
Prob. Num.	Point Value	Points Given	1) Use Euler's Method to approximate the solution to $dy/dx = 2x + y$, $y(0) = 1$ at points $x = 0.1, 0.2, 0.3, 0.4, 0.5$ using steps of size 0.1.
1	10		2) Find the general solution to the equation $\frac{dy}{dx} + \frac{3y}{x} + 2 = 3x$.
2	10		3) Solve $\frac{dy}{d\theta} = \frac{\theta \sec(y/\theta) + y}{\theta}$.
3	10		4) If initially there are 300 g of a radioactive substance and after 5 years there are 200 g remaining, how much time must elapse before only 1 g remains?
4	10		5) Find a general solution to $y^{iv} + 13y'' + 36y = 0$. (Hint, if needed: solve the characteristic equation for r^2 using the quadratic formula, then solve for <i>r</i> itself. All four solutions will be imaginary.)
5	10		6) Find the solution to the initial value problem $y'' + 2y' + y = 2\cos\theta$, $y(0) = 3$,
6	10		y'(0) = 0.
7	10		7) Solve the initial value problem for $y(t)$ using the method of Laplace transforms: $y''' + 4y'' + y' - 6y = -12$, $y(0) = 1$, $y'(0) = 4$, $y''(0) = -2$.
8	10		8) Find the first four nonzero terms in the Taylor polynomial approximation for the initial value problem $y'=2xy-y^2$, $y(0)=3$.
9	10		9) Find at least the first four nonzero terms in a power series expansion about $x = 0$ for a general solution to $(2x-3)y'' - xy' + y = 0$.
Total	90		
Adj.			
Grade			