Math 250 Exam \#4 Key (Summer 2022)

1 In operator notation the two equations are $(2 D-5) x+D y=e^{t}$ and $(D-1) x+D y=5 e^{t}$. From the first equation comes $D y=(5-2 D) x+e^{t}$, which when substituted into the second equation yields $(4-D) x=4 e^{t}$. We solve this for x to get $x=c_{1} e^{4 t}+\frac{4}{3} e^{t}$, which when put into $D y=(5-2 D) x+e^{t}$ yields $y=-\frac{3}{4} c_{1} e^{4 t}+c_{2}+5 e^{t}$. The system's general solution is thus

$$
x(t)=c_{1} e^{4 t}+\frac{4}{3} e^{t}, \quad y(t)=-\frac{3}{4} c_{1} e^{4 t}+c_{2}+5 e^{t}
$$

2 The Laplace transform of the system yields the equations $s X=-X+Y$ and $s Y-1=2 X$. Solving for $X=\mathcal{L}[x]$ and $Y=\mathcal{L}[y]$, we have

$$
\mathcal{L}[x]=\frac{1}{(s-1)(s+2)}, \quad \mathcal{L}[y]=\frac{1}{s}+\frac{2}{s(s-1)(s+2)},
$$

and therefore

$$
x(t)=\frac{1}{3} e^{t}-\frac{1}{3} e^{-2 t}, \quad y(t)=\frac{2}{3} e^{t}+\frac{1}{3} e^{-2 t} .
$$

3 The system is

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{1}{50} y-\frac{3}{50} x \\
y^{\prime}=\frac{3}{50} x-\frac{7}{100} y+\frac{1}{100} z \\
z^{\prime}=\frac{1}{20} y-\frac{1}{20} z
\end{array}\right.
$$

4 Generally the system has the form

$$
\left\{\begin{array}{l}
m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right) \\
m_{2} x_{2}^{\prime \prime}=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}
\end{array}\right.
$$

5 The general solution has the form

$$
y=c_{0}\left(1-\frac{3}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}-\frac{9}{320} x^{5}+\cdots\right)+c_{1}\left(x-\frac{1}{4} x^{3}+\frac{1}{16} x^{4}+\cdots\right)
$$

but with the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$ we find that $c_{0}=0$ and $c_{1}=1$, and so the IVP's solution is

$$
y=x-\frac{1}{4} x^{3}+\frac{1}{16} x^{4}+\cdots
$$

