Math 250 Exam \#3 Key (Summer 2022)

1 Letting $Y=\mathcal{L}[y]$, we have

$$
s Y-y(0)-2 Y=\frac{1}{s-2} \quad \longleftrightarrow \quad s Y-c-2 Y=\frac{1}{s-2} \quad \hookrightarrow \quad Y(s)=\frac{1}{(s-2)^{2}}+\frac{c}{s-2}
$$

Thus

$$
y(x)=\mathcal{L}^{-1}\left[\frac{1}{(s-2)^{2}}\right]+c \mathcal{L}^{-1}\left[\frac{1}{s-2}\right]=x e^{2 x}+c e^{2 x}=(x+c) e^{2 x}
$$

2 Letting $Y=\mathcal{L}[y]$, we transform the ODE, obtaining $\mathcal{L}\left[y^{\prime \prime}\right]+4 \mathcal{L}\left[y^{\prime}\right]-5 \mathcal{L}[y]=\mathcal{L}\left[x e^{x}\right]$, and hence

$$
\left(s^{2} Y-s\right)+4(s Y-1)-5 Y=\frac{1}{(s-1)^{2}}
$$

Solve for Y and apply partial fraction decomposition:

$$
Y(s)=\frac{s^{3}+2 s^{2}-7 s+5}{(s+5)(s-1)^{3}}=\frac{35}{216}\left(\frac{1}{s+5}\right)+\frac{181}{216}\left(\frac{1}{s-1}\right)-\frac{1}{36}\left(\frac{1}{(s-1)^{2}}\right)+\frac{1}{12}\left(\frac{1}{(s-1)^{2}}\right)
$$

Apply the inverse Laplace transform, obtaining

$$
y(x)=\frac{35}{216} \mathcal{L}^{-1}\left[\frac{1}{s+5}\right]+\frac{181}{216} \mathcal{L}^{-1}\left[\frac{1}{s-1}\right]-\frac{1}{36} \mathcal{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right]+\frac{1}{12} \mathcal{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right],
$$

and hence

$$
y(x)=\frac{35}{216} e^{-5 x}+\frac{181}{216} e^{x}-\frac{1}{36} x e^{x}+\frac{1}{12} x^{2} e^{x} .
$$

3a The time scale may be chosen so that $x(0)=0$, and thus $x(0.4 n)=0$ for every integer $n \geq 0$. Also we have $\left|x^{\prime}(0.4 n)\right|=6$ for $n \geq 0$, and we can choose the space scale so that $x^{\prime}(0)=6, x^{\prime}(0.4)=-6$, and so on. By definition of simple harmonic motion,

$$
x(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t,
$$

but $x(0)=0$ immediately implies $c_{1}=0$, so that $x(t)=c_{2} \sin \omega_{0} t$. The period of motion is $T=2(0.4)=0.8$, but also $T=2 \pi / \omega_{0}$ so that we must have $\omega_{0}=5 \pi / 2$. Now we have $x(t)=c_{2} \sin \left(\frac{5 \pi}{2} t\right)$, and thus

$$
x^{\prime}(t)=\frac{5 \pi}{2} c_{2} \cos \left(\frac{5 \pi}{2} t\right)
$$

Using $x^{\prime}(0)=6$ we find $c_{2}=\frac{12}{5 \pi}$, and therefore

$$
x(t)=\frac{12}{5 \pi} \sin \left(\frac{5 \pi}{2} t\right) .
$$

3b Period is $T=\frac{4}{5} \mathrm{sec}$; natural frequency is $\nu=1 / T=\frac{5}{4}$ cycles $/ \mathrm{sec}$; amplitude is $A=\frac{12}{5 \pi} \mathrm{~m}$.

4a We're given initial conditions $x(0)=\frac{1}{2}$ and $x^{\prime}(0)=\sqrt{2}$, and also $m=\frac{1}{8}, k=16$, and $b=0$. The ODE has the form $\frac{1}{8} x^{\prime \prime}+16 x=0$, which has general solution

$$
x(t)=c_{1} \cos (8 \sqrt{2} t)+c_{2} \sin (8 \sqrt{2} t)
$$

Using the initial conditions, we obtain the equation of motion

$$
x(t)=\frac{1}{2} \cos (8 \sqrt{2} t)+\frac{1}{8} \sin (8 \sqrt{2} t)=\frac{\sqrt{17}}{8} \sin (8 \sqrt{2} t+\varphi)
$$

where $\varphi=\arctan (4) \approx 1.326$.

4b Period is $T=\frac{\pi \sqrt{2}}{8}$ sec; natural frequency is $\nu=\frac{8}{\pi \sqrt{2}}$ cycles/sec; amplitude is $A=\frac{\sqrt{17}}{8} \mathrm{~m}$.
4c The times when $x(t)=0$ are times $t>0$ when $8 \sqrt{2} t+\varphi=n \pi$ for some integer n. That is,

$$
t=\frac{n \pi-\varphi}{8 \sqrt{2}} \approx \frac{n \pi-1.326}{8 \sqrt{2}}
$$

We find the smallest value of n such that $t>0$, which is $n=1$. Then we get

$$
t=\frac{\pi-\varphi}{8 \sqrt{2}} \approx 0.16 \mathrm{sec}
$$

4d Maximum displacement occurs at times $t>0$ when $x^{\prime}(t)=\sqrt{34} \cos (8 \sqrt{2} t+\varphi)=0$, which are times $t>0$ when $8 \sqrt{2} t+\varphi=\frac{\pi}{2}+n \pi$. That is,

$$
\begin{equation*}
t=\frac{1}{8 \sqrt{2}}\left(\frac{(2 n+1) \pi}{2}-\varphi\right) \tag{1}
\end{equation*}
$$

There is no damping, so the maximum displacement is reached twice each period, with the first time of maximum displacment being given by (1) when $n=0$. Then we get

$$
t=\frac{1}{8 \sqrt{2}}\left(\frac{\pi}{2}-\varphi\right) \approx 0.02164
$$

The maximum displacement is $x(0.02164)=0.515 \mathrm{~m}$.

