Math 250 Exam \#1 Key (Summer 2022)

1 Simplify the ODE a bit, writing $x^{2}+y^{2}+2 c y=1$. Differentiate this with respect to x to get $2 x+2 y y^{\prime}+2 c y^{\prime}=0$, and thus $c=-x / y^{\prime}-y$. This the expression for c into the simplified ODE to get

$$
x^{2}+y^{2}+2\left(-\frac{x}{y^{\prime}}-y\right) y=1 \quad \longleftrightarrow \quad\left(x^{2}-y^{2}\right) y^{\prime}=2 x y+y^{\prime}
$$

2 Equation is separable, yielding

$$
\int\left(3 y^{2}+e^{y}\right) d y=\int \cos x d x \quad \hookrightarrow \quad y^{3}+e^{y}=\sin x+c
$$

With the initial condition $y(0)=2$ we find $c=8+e^{2}$, and so $y^{3}+e^{y}=\sin x+8+e^{2}$.
3 Divide by $2 x^{2}$ to write the ODE as

$$
\frac{d y}{d x}=\frac{1}{2}\left[1+\left(\frac{y}{x}\right)^{2}\right] .
$$

Letting $y=u x$, the ODE becomes separable:

$$
x \frac{d u}{d x}+u=\frac{1}{2}\left(1+u^{2}\right) \quad \hookrightarrow \quad \int \frac{1}{(u-1)^{2}} d u=\int \frac{1}{2 x} d x \quad \hookrightarrow \quad-\frac{1}{u-1}=\frac{1}{2} \ln |x|+c
$$

Thus

$$
u=1-\frac{2}{\ln |x|+c} \quad \hookrightarrow \quad \frac{y}{x}=1-\frac{2}{\ln |x|+c} \quad \hookrightarrow \quad y=x-\frac{2 x}{\ln |x|+c},
$$

with the solution having intervals of validity $\left(-\infty,-e^{-c}\right),\left(-e^{-c}, 0\right),\left(0, e^{-c}\right)$, and $\left(e^{-c}, \infty\right)$.

4 The equation is given to be exact, with

$$
M(x, y)=2 x+e^{y} \quad \text { and } \quad N(x, y)=x e^{y}
$$

We find function F such that $F_{x}=M$ and $F_{y}=N$. The former equation gives

$$
F(x, y)=\int F_{x}(x, y) d x=\int M(x, y) d x=\int\left(2 x+e^{y}\right) d x=x^{2}+x e^{y}+g(y)
$$

Differentiating this result respect to y then yields

$$
F_{y}(x, y)=x e^{y}+g^{\prime}(y)
$$

with $F_{y}=N$ implying that

$$
x e^{y}+g^{\prime}(y)=x e^{y}
$$

Thus $g^{\prime}(y)=0$, and so $g(y)=c_{1}$ for some arbitrary constant c_{1}. This leaves us with

$$
F(x, y)=x^{2}+x e^{y}+c_{1} .
$$

The general (implicit) solution to the ODE is given by $F(x, y)=c_{2}$ for arbitrary constant c_{2}, which here becomes

$$
x^{2}+x e^{y}+c_{1}=c_{2}
$$

Letting $c=c_{2}-c_{1}$, we finally write $x^{2}+x e^{y}=c$.

5 Standard form is $y^{\prime}-\frac{3}{x} y=x^{2}$. A suitable integrating factor is

$$
\mu(x)=e^{-\int \frac{3}{x} d x}=e^{-3 \ln |x|+c}=|x|^{-3}
$$

where we choose $c=0$. Since the solution to the IVP must contain the point $(1,0)$, so that $x>0$, we have $\mu(x)=x^{-3}$. Multiply standard form by this to get

$$
\frac{1}{x^{3}} y^{\prime}-\frac{3}{x^{4}} y=\frac{1}{x} \quad \hookrightarrow \quad\left(\frac{y}{x^{3}}\right)^{\prime}=\frac{1}{x} \quad \hookrightarrow \quad \frac{y}{x^{3}}=\int \frac{1}{x} d x \quad \hookrightarrow \quad y=x^{3} \ln x+c x^{3}
$$

Using $y(1)=0$ we obtain $c=0$, and therefore $y=x^{3} \ln x$.
6 Let $u=y^{-1}$ to transform the ODE into the linear equation

$$
\begin{equation*}
\frac{d u}{d x}-\frac{3}{x} u=-x^{2} \tag{1}
\end{equation*}
$$

The integrating factor is $\mu(x)=|x|^{-3}$. If $x>0$, so that $\mu(x)=x^{-3}$, then multiplying (1) by $\mu(x)$ yields

$$
x^{-3} u^{\prime}-3 x^{-4} u=-\frac{1}{x} \quad \hookrightarrow \quad\left(x^{-3} u\right)^{\prime}=-\frac{1}{x} \quad \hookrightarrow \quad x^{-3} u=-\ln x+c,
$$

and so $u=x^{3}(c-\ln x)$. If $x<0$, so that $\mu(x)=-x^{-3}$, then multiplying (1) by $\mu(x)$ yields much the same result, only $u=x^{3}(c-\ln (-x))$. We combine the two families of solutions by writing $u=x^{3}(c-\ln |x|)$. Finally, since $y=1 / u$ we obtain

$$
y=\frac{1}{c x^{3}-x^{3} \ln |x|}
$$

7 Let $x(t)$ be the amount of isopropyl alcohol in kilograms in the tank at time t, so that $x(0)=40$, and $d x / d t$ is the rate of change of the amount. Noting that the volume of solution in the tank at time t is $500+t$, we have

$$
\frac{d x}{d t}=(\text { rate going in })-(\text { rate going out })=0-\left(\frac{2 \mathrm{~L}}{1 \min }\right)\left(\frac{x}{500+t}\right)
$$

or simply

$$
\frac{d x}{d t}=-\frac{2 x}{t+500}
$$

The equation is separable:

$$
-\int \frac{1}{2 x} d x=\int \frac{1}{t+500} d t \quad \longleftrightarrow \quad-\frac{1}{2} \ln x=\ln (t+500)+c \quad \hookrightarrow \quad x(t)=\frac{C}{(t+500)^{2}}
$$

where $C:=e^{c}>0$ is arbitrary. Using $x(0)=40$ we find that $40=C / 500^{2}$, or $C=10^{7}$, and so

$$
x(t)=\frac{10^{7}}{(t+500)^{2}}
$$

Now we find t when $x(t)=25$:

$$
25=\frac{10^{7}}{(t+500)^{2}} \quad \hookrightarrow \quad(t+500)^{2}=\frac{10^{7}}{25} \quad \hookrightarrow \quad t=200 \sqrt{10}-500 \approx 132.5 \mathrm{~min}
$$

8 Let $T(t)$ be the temperature of the object at time t. We're given $T(0)=10$ and $T(10)=30$, and the ambient temperature is $M=80$. With Newton's Law of Warming we have

$$
\frac{d T}{d t}=k(T-80) \quad \hookrightarrow \quad \int \frac{1}{T-80} d T=\int k d t \quad \hookrightarrow \quad \ln (80-T)=k t+c
$$

where $\ln |T-80|=\ln (80-T)$ since $T(t)<80$ for all $t \geq 0$ according to the model. Solving for T yields

$$
T(t)=80-C e^{k t}
$$

and with $T(0)=10$ we discover that $C=70$, so

$$
T(t)=80-70 e^{k t}
$$

Using $T(10)=30$ allows us to solve for k to get $k=\frac{1}{10} \ln \frac{5}{7} \approx-0.03365$. Therefore

$$
T(t)=80-70 e^{-0.03365 t}
$$

Finally, the temperature of the object after 30 minutes is

$$
T(30)=80-70 e^{-0.03365(30)} \approx 54.5^{\circ} \mathrm{F}
$$

9 Suppose that $g \equiv k f$ for constant k on I. Suppose further that $c_{1} f+c_{2} g \equiv 0$ on I. Then

$$
c_{1} f+c_{2} g=c_{1} f+c_{2} k f=\left(c_{1}+c_{2} k\right) f \equiv 0
$$

on I. If $k=0$ we can satisfy the identity with $c_{1}=0$ and $c_{2}=1$. If $k \neq 0$ then let $c_{1}=1$ and $c_{2}=-1 / k$ to safisfy the identity. In either case we can satisfy the identity on I without having $c_{1}=c_{2}=0$. Therefore f and g are linearly dependent on I.

