1 Simplify the ODE a bit, writing $x^2 + y^2 + 2cy = 1$. Differentiate this with respect to x to get 2x + 2yy' + 2cy' = 0, and thus c = -x/y' - y. This the expression for c into the simplified ODE to get

$$x^{2} + y^{2} + 2\left(-\frac{x}{y'} - y\right)y = 1 \quad \longleftrightarrow \quad (x^{2} - y^{2})y' = 2xy + y'.$$

2 Equation is separable, yielding

$$\int (3y^2 + e^y) \, dy = \int \cos x \, dx \quad \hookrightarrow \quad y^3 + e^y = \sin x + c$$

With the initial condition y(0) = 2 we find $c = 8 + e^2$, and so $y^3 + e^y = \sin x + 8 + e^2$.

3 Divide by $2x^2$ to write the ODE as

$$\frac{dy}{dx} = \frac{1}{2} \left[1 + \left(\frac{y}{x}\right)^2 \right].$$

Letting y = ux, the ODE becomes separable:

$$x\frac{du}{dx} + u = \frac{1}{2}(1+u^2) \quad \longleftrightarrow \quad \int \frac{1}{(u-1)^2} \, du = \int \frac{1}{2x} \, dx \quad \longleftrightarrow \quad -\frac{1}{u-1} = \frac{1}{2}\ln|x| + c.$$

Thus

$$u = 1 - \frac{2}{\ln|x| + c} \quad \longleftrightarrow \quad \frac{y}{x} = 1 - \frac{2}{\ln|x| + c} \quad \longleftrightarrow \quad y = x - \frac{2x}{\ln|x| + c},$$

with the solution having intervals of validity $(-\infty, -e^{-c})$, $(-e^{-c}, 0)$, $(0, e^{-c})$, and (e^{-c}, ∞) .

4 The equation is given to be exact, with

$$M(x,y) = 2x + e^y$$
 and $N(x,y) = xe^y$

We find function F such that $F_x = M$ and $F_y = N$. The former equation gives

$$F(x,y) = \int F_x(x,y) \, dx = \int M(x,y) \, dx = \int (2x + e^y) \, dx = x^2 + xe^y + g(y).$$

Differentiating this result respect to y then yields

$$F_y(x,y) = xe^y + g'(y),$$

with $F_y = N$ implying that

$$xe^y + g'(y) = xe^y.$$

Thus g'(y) = 0, and so $g(y) = c_1$ for some arbitrary constant c_1 . This leaves us with

$$F(x,y) = x^2 + xe^y + c_1.$$

The general (implicit) solution to the ODE is given by $F(x, y) = c_2$ for arbitrary constant c_2 , which here becomes

$$x^2 + xe^y + c_1 = c_2.$$

Letting $c = c_2 - c_1$, we finally write $x^2 + xe^y = c$.

5 Standard form is $y' - \frac{3}{x}y = x^2$. A suitable integrating factor is

$$\mu(x) = e^{-\int \frac{3}{x}dx} = e^{-3\ln|x|+c} = |x|^{-3},$$

where we choose c = 0. Since the solution to the IVP must contain the point (1,0), so that x > 0, we have $\mu(x) = x^{-3}$. Multiply standard form by this to get

$$\frac{1}{x^3}y' - \frac{3}{x^4}y = \frac{1}{x} \quad \longleftrightarrow \quad \left(\frac{y}{x^3}\right)' = \frac{1}{x} \quad \hookrightarrow \quad \frac{y}{x^3} = \int \frac{1}{x} \, dx \quad \hookrightarrow \quad y = x^3 \ln x + cx^3.$$

Using y(1) = 0 we obtain c = 0, and therefore $y = x^3 \ln x$.

6 Let $u = y^{-1}$ to transform the ODE into the linear equation

$$\frac{du}{dx} - \frac{3}{x}u = -x^2. \tag{1}$$

The integrating factor is $\mu(x) = |x|^{-3}$. If x > 0, so that $\mu(x) = x^{-3}$, then multiplying (1) by $\mu(x)$ yields

$$x^{-3}u' - 3x^{-4}u = -\frac{1}{x} \quad \longleftrightarrow \quad (x^{-3}u)' = -\frac{1}{x} \quad \hookrightarrow \quad x^{-3}u = -\ln x + c,$$

and so $u = x^3(c - \ln x)$. If x < 0, so that $\mu(x) = -x^{-3}$, then multiplying (1) by $\mu(x)$ yields much the same result, only $u = x^3(c - \ln(-x))$. We combine the two families of solutions by writing $u = x^3(c - \ln |x|)$. Finally, since y = 1/u we obtain

$$y = \frac{1}{cx^3 - x^3 \ln|x|}.$$

7 Let x(t) be the amount of isopropyl alcohol in kilograms in the tank at time t, so that x(0) = 40, and dx/dt is the rate of change of the amount. Noting that the volume of solution in the tank at time t is 500 + t, we have

$$\frac{dx}{dt} = (\text{rate going in}) - (\text{rate going out}) = 0 - \left(\frac{2 \text{ L}}{1 \text{ min}}\right) \left(\frac{x}{500 + t}\right),$$

or simply

$$\frac{dx}{dt} = -\frac{2x}{t+500}$$

The equation is separable:

$$-\int \frac{1}{2x} dx = \int \frac{1}{t+500} dt \quad \longrightarrow \quad -\frac{1}{2} \ln x = \ln(t+500) + c \quad \longrightarrow \quad x(t) = \frac{C}{(t+500)^2},$$

where $C := e^c > 0$ is arbitrary. Using x(0) = 40 we find that $40 = C/500^2$, or $C = 10^7$, and so

$$x(t) = \frac{10^{\prime}}{(t+500)^2}$$

Now we find t when x(t) = 25:

$$25 = \frac{10^7}{(t+500)^2} \quad \hookrightarrow \quad (t+500)^2 = \frac{10^7}{25} \quad \hookrightarrow \quad t = 200\sqrt{10} - 500 \approx 132.5 \text{ min.}$$

8 Let T(t) be the temperature of the object at time t. We're given T(0) = 10 and T(10) = 30, and the ambient temperature is M = 80. With Newton's Law of Warming we have

$$\frac{dT}{dt} = k(T - 80) \quad \longleftrightarrow \quad \int \frac{1}{T - 80} \, dT = \int k \, dt \quad \longleftrightarrow \quad \ln(80 - T) = kt + c,$$

where $\ln |T - 80| = \ln(80 - T)$ since T(t) < 80 for all $t \ge 0$ according to the model. Solving for T yields

$$T(t) = 80 - Ce^{kt},$$

and with T(0) = 10 we discover that C = 70, so

$$T(t) = 80 - 70e^{kt}.$$

Using T(10) = 30 allows us to solve for k to get $k = \frac{1}{10} \ln \frac{5}{7} \approx -0.03365$. Therefore $T(t) = 80 - 70e^{-0.03365t}$.

Finally, the temperature of the object after 30 minutes is

$$T(30) = 80 - 70e^{-0.03365(30)} \approx 54.5^{\circ}$$
F.

9 Suppose that $g \equiv kf$ for constant k on I. Suppose further that $c_1f + c_2g \equiv 0$ on I. Then $c_1f + c_2g = c_1f + c_2kf = (c_1 + c_2k)f \equiv 0$

on *I*. If k = 0 we can satisfy the identity with $c_1 = 0$ and $c_2 = 1$. If $k \neq 0$ then let $c_1 = 1$ and $c_2 = -1/k$ to satisfy the identity. In either case we can satisfy the identity on *I* without having $c_1 = c_2 = 0$. Therefore *f* and *g* are linearly dependent on *I*.