
Math 250 Exam #2 Key (Summer 2016)

1 Newton’s Law of Cooling states that T ′(t) = k[T (t)−M ], where M is the temperature of
the oven. Here we have T (0) = 70, T (0.5) = 120, and T (1) = 160. Now,

T ′ = k(T −M) ⇒
∫

dT

T −M
=

∫
k dt ⇒ ln |T −M | = kt+ c ⇒ M − T = ekt+c,

and so

T (t) = M − Cekt.
From T (0) = 70 we obtain 70 = M − C, so C = M − 70 and then

T (t) = M − (M − 70)ekt.

From T (0.5) = 120 we obtain

120 = M − (M − 70)e0.5k ⇒ e0.5k =
120−M
70−M

⇒ k = ln

(
120−M
70−M

)2

.

Thus

T (t) = M − (M − 70)

(
120−M
70−M

)2t

Now we use T (1) = 160 to get

160 = M − (70−M)

(
120−M
70−M

)2

,

which solves nicely to give M = 320◦F.

2 Let x(t) be the mass of sugar (in kilograms) in the tank at time t (in minutes), so that
x(0) = 5. The volume of solution in the tank is V (t) = 400 + 5t. The rate of change of the
amount of sugar in the tank at time t is:

x′(t) = (rate sugar enters Tank 1)− (rate sugar leaves Tank 1)

=

(
0.05 kg

1 L

)(
20 L

1 min

)
−
(
x(t) kg

V (t) L

)(
15 L

1 min

)
= 1− 15x(t)

400 + 5t
= 1− 3x(t)

80 + t
.

Thus we have a linear first-order ODE:

x′ +
3x

t+ 80
= 1.

To solve this equation, we multiply by the integrating factor

µ(t) = exp

(∫
3

t+ 80
dt

)
= e3 ln(t+80) = (t+ 80)3

to obtain

(t+ 80)3x′ + 3(t+ 80)2x = (t+ 80)3,

which becomes [
(t+ 80)3x

]′
= (t+ 80)3
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and thus

(t+ 80)3x =

∫
(t+ 80)3 dt =

1

4
(t+ 80)4 + c.

From this we get a general explicit solution to the ODE,

x(t) =
t

4
+

c

(t+ 80)3
+ 20.

To determine c we use the initial condition x(0) = 5, giving c = −15(803), and so

x(t) =
t

4
− 15

(
80

t+ 80

)3
+ 20.

The amount of sugar in the tank after 1 hour (60 minutes) is

x(60) =
60

4
− 15

(
80

140

)3
+ 20 ≈ 32.2 kg.

3 Suppose c1, c2, c3 are constants such that c1f + c2g + c3h ≡ 0 on (−∞,∞). That is,

c1f(x) + c2g(x) + c3h(x) = 0

for all x ∈ R, and hence
c1x

2 + c2(6x
2 − 1) + c3(2x

2 + 3) = 0

for all x ∈ R. Rewrite this as

(c1 + 6c2 + 2c3)x
2 + (−c2 + 3c3) = 0,

and note that if we let c2 = 3 and c3 = 1, then the constant term −c2 + 3c3 is eliminated. Now
all we need do is set c1 = −20 to also eliminate the x2 term. That is, if we choose c1 = −20,
c2 = 3, and c3 = 1, then c1f(x) + c2g(x) + c3h(x) = 0 is satisfied for all x ∈ R. Therefore f , g,
and h are linearly dependent on (−∞,∞).

4 The auxiliary equation r2 − 10r + 25 = 0 has double root 5, and so the general solution is

y(x) = c1e
5x + c2xe

5x.

5 The auxiliary equation is r4 + r3 + r2 = 0, or r2(r2 + r + 1) = 0, which has double root 0

and complex roots −1
2
±
√
3
2
i. The general solution is thus

y(x) = c1 + c2x+ e−x/2
(
c3 cos

√
3
2
x+ c4 sin

√
3
2
x
)
.

6 Put equation in standard form: y′′ + 2t−1y′ − 6t−2y = 0, so P (t) = 2/t. We’re given that
y1(t) = t2 is a solution. From this we obtain

y2(t) = y1(t)

∫
e−

∫
P (t) dt

y21(t)
dt = t2

∫
e−2 ln |t|

t4
dt = t2

∫
1

t6
dt = t2

(
−1

5
t−5 + c

)
= − 1

5t3
+ ct2

for any c ∈ R. If we let c = 0 then we get y2(t) = −1/5t3.
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7a First consider y′′ + 2y′ = 2t + 5. Auxiliary equation is r2 + 2r = 0, which has roots
r = −2, 0. Now, the nonhomogeneity f1(t) = 2t + 5 has the form Pm(t)eαt with m = 1 and
α = 0, and since 0 is a root of the auxiliary equation we will need s = 1 in the form for the
particular solution yp1 . We have:

yp1(t) = tseαt
m∑
k=0

Akt
k = t(A0 + A1t) = At+Bt2

(it’s convenient to let A = A0 and B = A1). Thus y′p1(t) = A + 2Bt and y′′p1(t) = 2B. Putting
all this into y′′ + 2y′ = 2t+ 5 gives

2B + 2(A+ 2Bt) = 2t+ 5 ⇒ 4Bt+ (2A+ 2B) = 2t+ 5,

so that 4B = 2 and 2A+ 2B = 5, and finally A = 2 and B = 1
2
. Therefore yp1(t) = 2t+ 1

2
t2.

Next consider y′′ + 2y′ = −e−2t. The nonhomogeneity f2(t) = −e−2t has the form Pm(t)eαt

with m = 0 and α = −2, and since −2 is a root of the auxiliary equation we will need s = 1 in
the form for the particular solution yp2 . We have

yp2(t) = tseαt
m∑
k=0

Akt
k = tAe−2t,

so
y′p2(t) = (−2At+ A)e−2t and y′′p2(t) = (4At− 4A)e−2t.

Putting all this into y′′+ 2y′ = −e−2t and simplifying gives −2Ae−2t = −e−2t, and thus A = 1
2
.

Therefore yp2(t) = 1
2
te−2t.

By the Superposition Principle we conclude that

yp(t) = yp1(t) + yp2(t) = 2t+ 1
2
t2 + 1

2
te−2t

is a particular solution of the original equation.

7b General solution is

y(t) = c1 + c2e
−2t + 2t+ 1

2
t2 + 1

2
te−2t.

8 The nonhomogeneity is f(t) = −2, so has form Pm(t)eαt with m = 0 and α = 0. Auxiliary
equation: r2 + 4 = 0, which has roots r = ±2i. Thus α = 0 is not a root of the auxiliary
equation. By the Method of Undetermined Coefficients we have yp(t) = A, which when put
into the ODE easily gives A = −1

2
, and so yp(t) = −1

2
. General solution is therefore

y(t) = c1 cos 2t+ c2 sin 2t− 1
2
.

Now, from y(π/8) = 1
2

we obtain c1 + c2 =
√

2, and from

y′(t) = −2c1 sin 2t+ 2c2 cos 2t.

and y′(π/8) = 2 we obtain −c1 + c2 =
√

2. Adding c1 + c2 =
√

2 and −c1 + c2 =
√

2 gives
2c2 = 2

√
2, or c2 =

√
2, from which it follows that c1 = 0. Therefore

y(t) =
√

2 sin 2t− 1
2

is the solution to the IVP.
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9 From the auxiliary equation r2 + 1 = 0 we obtain r = ±i, and so

y1(t) = cos t and y2(t) = sin t

are two linearly independent solutions to y′′ + y = 0. The Wronskian of y1 and y2 is

W [y1, y2](t) = y1(t)y
′
2(t)− y2(t)y′1(t) = 1.

Now, with a2 = 1 and f(t) = sec2 t, and making the substitution u = cos t, we have

v1(t) =
1

a2

∫
−y2(t)f(t)

W [y1, y2](t)
dt = −

∫
sin t

cos2 t
dt =

∫
1

u2
du = −1

u
= − sec t

and

v2(t) =
1

a2

∫
y1(t)f(t)

W [y1, y2](t)
dt =

∫
sec t dt = ln | sec t+ tan t|.

A particular solution to the ODE is

yp(t) = v1(t)y1(t) + v2(t)y2(t) = − sec t cos t+ sin t · ln | sec t+ tan t| = sin t · ln | sec t+ tan t| − 1,

and so the general solution is

y(t) = c1 cos t+ c2 sin t+ sin t · ln | sec t+ tan t| − 1.

10 The IVT is
y′′ + 10y′ + 16y = 0, y(0) = 1, y′(0) = −12.

The auxiliary equation r2 + 10r + 16 = 0 has roots −8 and −2, and so the general solution to
the ODE is

y(t) = c1e
−2t + c2e

−8t.

With the initial conditions we find that c1 = −2
3

and c2 = 5
3
. The equation of motion is

therefore
y(t) = −2

3
e−2t + 5

3
e−8t.


