
Math 250 Exam #2 Key (Summer 2013)

1 Solve for y′:

y′ = −x
2 + y2

2xy
= − x

2y
− y

2x
. (1)

Let v = y/x, so that y = vx. Differentiating with respect to x yields y′ = (vx)′ = v′x+ v, and
so (1) becomes

v′x+ v = − 1

2v
− v

2
⇒ xv′ = −3v2 + 1

2v
⇒ v′ =

1

x

(
−3v2 + 1

2v

)
This is a separable equation. We obtain∫

− 2v

3v2 + 1
dv =

∫
1

x
dx.

Performing the substitution u = 3v2 + 1 on the left-hand integral gives

−
∫

1/3

u
du =

∫
1

x
dx ⇒ −1

3
ln |u| = ln |x|+ c ⇒ −1

3
ln(3v2 + 1) = ln |x|+ c,

and hence

−1

3
ln

(
3y2

x2
+ 1

)
= ln |x|+ c ⇒ ln |x|+ 1

3
ln

(
3y2

x2
+ 1

)
= c ⇒ ln

(
|x| 3
√

3y2

x2
+ 1

)
= c

for arbitrary c ∈ R. Exponentiating both sides yields

|x| 3
√

3y2

x2
+ 1 = c̃,

where c̃ = ec > 0 is arbitrary. Thus

x
3

√
3y2

x2
+ 1 = ±c̃ = ĉ,

where ĉ 6= 0 is arbitrary. Cubing both sides yields

x3
(

3y2

x2
+ 1

)
= ĉ ⇒ 3xy2 + x3 = ĉ.

2 In the standard form y′ + P (x)y = Q(x)yn we have

y′ − 2

x
y = −x2y2,

so P (x) = −2/x, Q(x) = −x2, and n = 2. Letting v = y1−n = y−1, the equation will transform
into v′ + (1− n)P (x)v = (1− n)Q(x):

v′ +
2

x
v = x2. (2)

This is a linear equation. A suitable integrating factor is

µ(x) = exp

(∫
2

x
dx

)
= e2 ln |x| = elnx

2

= x2.
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Multiply (2) by x2 to get

x2v′ + 2xv = x4 ⇒ (x2v)′ = x4 ⇒ x2v =

∫
x4dx ⇒ x2v =

1

5
x5 + c,

whence
x2

y
=
x5

5
+ c.

3 Let x(t) be the number of kg of salt in Tank 1 at time t, and let y(t) be the number of kg
of salt in Tank 2 at time t. We have x(0) = x0 for some constant x0, and also y(0) = 0 since
the water in Tank 2 is initially pure.

60 L solution
x(t) kg salt

x(0) = x0

3 L/min

0 kg/L

60 L solution
y(t) kg salt

y(0) = 0 3 L/min
1
60
y(t) kg/L

3 L/min
1
60
x(t) kg/L

The volume of solution in Tank 1 is a constant 60 L, so

x′(t) = (rate salt enters Tank 1)− (rate salt leaves Tank 1)

= 0−
(
x(t) kg

60 L

)(
3 L

1 min

)
= −3x(t)

60
,

which yields the equation x′ = − 1
20
x, also written as dx/dt = −x/20. This equation is separable,

giving ∫
20

x
dx = −

∫
dt,

and hence
ln
(
x20
)

= −t+ c0

for arbitrary constant c0. Exponentiating both sides and letting c1 = ec0 be an arbitrary positive
constant, we obtain

x20 = e−t+c0 = c1e
−t,

and then x(t) = c1e
−t/20. Using the initial condition x(0) = x0, we substitute t = 0 and x = x0

into the equation to get x0 = c1e
0 = c1, and thus

x(t) = x0e
−t/20. (3)

Now we turn our attention to Tank 2. Since the volume of solution in Tank 2 is always
60 L, we have

y′(t) = (rate salt enters Tank 2)− (rate salt leaves Tank 2)
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=

(
x(t) kg

60 L

)(
3 L

1 min

)
−
(
y(t) kg

60 L

)(
3 L

1 min

)
=
x(t)

20
− y(t)

20
=
x0e
−t/20 − y(t)

20

where the last equality follows from (3). Hence we have the equation

y′ +
1

20
y =

x0
20
e−t/20, (4)

which is a first-order linear ODE and so can be solved by finding an appropriate integrating
factor µ(t). We have

µ(t) = exp

(∫
1

20
dt

)
= et/20

and so, multiplying (4) by et/20, we obtain

y′et/20 +
1

20
yet/20 =

x0
20
,

which can be written (
yet/20

)′
=
x0
20
,

and therefore

yet/20 =

∫
x0
20
dt =

x0
20
t+ c.

Using the initial condition y(0) = 0, we substitute t = 0 and y = 0 into this equation to find
that c = 0, and at last we have an expression for y(t):

y(t) =
x0
20
te−t/20.

The concentration of salt in Tank 2 at time t, C(t), is given by C(t) = y(t)/60; that is,

C(t) =
x0

1200
te−t/20.

To determine when the concentration is greatest, we must find t > 0 for which C(t) attains a
global maximum value on (0,∞). This entails finding t for which C ′(t) = 0; that is, we must
solve

x0
1200

e−t/20 − x0
24, 000

te−t/20 = 0.

But this equation immediately implies that 20− t = 0, and hence t = 20 minutes.

4 Suppose that c1ϕ + c2ψ + c3ξ = 0 on (−∞,∞). This means that c1te
2t + c2e

2t + c3e
t = 0

for all t ∈ (−∞,∞). If we let t equal 0, 1, and 2, we obtain the system of equations{
c2 + c3 = 0

e2c1 + e2c2 + ec3 = 0
2e4c1 + e4c2 + e2c3 = 0

It’s straightforward to verify that the only solution to this system is the trivial solution:
(c1, c2, c3) = (0, 0, 0). Since c1ϕ+ c2ψ + c3ξ = 0 on (−∞,∞) implies that c1 = c2 = c3 = 0, we
conclude that ϕ, ψ, and ξ are linearly independent on (−∞,∞).
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5 Auxiliary equation is 2r2 +7r−15 = 0, which has roots r1 = 3/2 and r2 = −5. The general
solution is therefore

y(t) = c1e
3t/2 + c2e

−5t,

and hence
y′(t) = 3

2
c1e

3t/2 − 5c2e
−5t.

From the initial conditions y(0) = −2 and y′(0) = 4 we have{
c1 + c2 = −2

3
2
c1 − 5c2 = 4

Solving this system yields c1 = −12/13 and c2 = −14/13, and so the solution to the initial
value problem is

y(t) = −12
13
e3t/2 − 14

13
e−5t.

6 Auxiliary equation is 9r2−12r+4 = 0, which has double root r = 2/3. The general solution
is therefore

y(t) = c1e
2t/3 + c2te

2t/3.

7 Auxiliary equation is 12r3 − 28r2 − 3r + 7 = 0, which factors by grouping:

(3r − 7)(2r − 1)(2r + 1) = 0.

Roots are r = 7/3, 1/2,−1/2. General solution:

y(t) = c1e
−t/2 + c2e

t/2 + c3e
7t/3.

8 Auxiliary equation is r2 + 9 = 0, which has roots r = ±3i. Thus we have

y(t) = c1 cos 3t+ c2 sin 3t

With the initial conditions y(0) = 1 and y′(0) = 1 we find that c1 = 1 and c2 = 1/3, and so

y(t) = cos 3t+ 1
3

sin 3t.

9a The nonhomogeneity is
f(t) = Pm(t)eαt = 4t2,

so m = 2 and α = 0. We see that α is not a root of the auxiliary equation r2 − 3r + 2 = 0, so
s = 0 and we have

yp(t) = tseαt
m∑
k=0

Akt
k =

2∑
k=0

Akt
k = A0 + A1t+ A2t

2.

For convenience we may write yp(t) = A+Bt+ Ct2, so that

y′p(t) = B + 2Ct and y′′p(t) = 2C.
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Substituting into the ODE yields

2C − 3(B + 2Ct) + 2(A+Bt+ Ct2) = 4t2,

or
(2C)t2 + (−6C + 2B)t+ (2C − 3B + 2A) = 4t2.

Equating coefficients gives the system{
2C = 4

2B − 6C = 0
2A − 3B + 2C = 0

which has solution (A,B,C) = (7, 6, 2), and thus a particular solution to the ODE is
yp(t) = 2t2 + 6t+ 7.

9b The nonhomogeneity is

f(t) = Pm(t)eαt sin βt = et sin t,

so m = 0, α = 1, and β = 1. We see that α+ iβ = 1 + i is not a root of the auxiliary equation
r2 − 3r + 2 = 0, so s = 0 and we have

yp(t) = et cos t
0∑

k=0

Akt
k + et sin t

0∑
k=0

Bkt
k = A0e

t cos t+B0e
t sin t,

or simply yp(t) = Aet cos t+Bet sin t. Now,

y′p(t) = (−A+B)et sin t+ (A+B)et cos t and y′′p(t) = 2Bet cos t− 2Aet sin t,

and substitution into the ODE yields

et(2B cos t− 2A sin t)− 3et[(B − A) sin t+ (A+B) cos t] + 2et(A cos t+B sin t) = et sin t,

or simply
(A−B) sin t+ (−A−B) cos t = sin t.

Equating coefficients yields the system{
A − B = 1
−A − B = 0

which has solution (A,B) =
(
1
2
,−1

2

)
, and thus a particular solution to the ODE is

yp(t) = et
(
1
2

cos t− 1
2

sin t
)
.

9c Using the results of parts (a) and (b), by the Principle of Superposition a particular
solution is

yp(t) = 1
2
et(cos t− sin t) + 2t2 + 6t+ 7.

9d The auxiliary equation of the corresponding homogeneous equation y′′ − 3y′ + 2y = 0
is r2 − 3r + 2 = 0, which has roots 1, 2. Thus the general solution to the homogeneous



6

equation is yh(t) = c1e
t + c2e

2t, and by the Superposition Principle the general solution to
y′′ − 3y′ + 2y = et sin t+ 4t2 is

y(t) = 1
2
et(cos t− sin t) + 2t2 + 6t+ 7 + c1e

t + c2e
2t.

10a By the Method of Variation of Parameters we obtain the particular solution

yp(t) =
(2 ln t− 3)t2e−2t

4
.

(See exercise #4.6.7 in the textbook.)

10b The auxiliary equation of the corresponding homogeneous equation y′′ + 4y′ + 4y = 0
is r2 + 4r + 4 = 0, which has double root r = −2. The general solution of the homogeneous
equation is thus

yh(t) = c1e
−2t + c2te

−2t,

and therefore the general solution to the original nonhomogeneous equation is, by the Super-
position Principle,

y(t) =
(2 ln t− 3)t2e−2t

4
+ c1e

−2t + c2te
−2t.

10c The factor ln(t) in the nonhomogeneity e−2t ln(t) is not a polynomial, exponential, sine,
or cosine function.


