MaTH 250 ExaM #1 KEY (SUMMER 2013)

1 T'(t) = k[M(t)—T(t)], or simply 7" = k(M —T'), where k is the constant of proportionality
(not an arbitrary constant). Note: we could also write 7" = k(7' — M), which in practice would
result merely in the constant of proportionality k reversing sign.

2 We have

flz,y) =32 — {/y—1,

which is continuous everywhere. However

I Ry 1
flwy) = —3(y—1)" TR

is not continuous on the line y = 1 since the function is not defined there. The initial point

(2,1) lies on this line, and so the Existence-Uniqueness Theorem does not imply that the initial
value problem has a unique solution.

3 Substitute 2e* — €2 for # in the equation to obtain
(265 — e2)" — (2% — €2) (263 — ) + 3(2e3 — €2) = —2¢%
(18e% — 4e') — (2e* — e2")(6e* — 2e*) + (6 — 3e*') = —2e*
186 — 4e? — 12e% + 10e™ — 2e* + 6™ — 3e* = —2¢*
—12e% + 10e™ — 2e* + 24 — T = —2e*

The last equation is not true for all ¢ on any interval I C R, and so the function 2e3* — 2 is

not a solution to the ODE.

4 Substitute p(z) = ™" for y to obtain
2(e™)" +9(e™)" = 5(e™) =0
2m>e™* + 9m?e™* — 5me™ = (
(2m® + 9m? — 5m)e™* = 0
To satisfy the equation for all x in some interval I C R, it will be necessary to have
2m® + 9m® — 5m = 0.
Solving this equation for m, we have
m(2m —1)(m+5) =0

and thus m = 0,1/2,—5. This shows that ¢;(z) = 1, ps(z) = ¢*/?, and @3(x) = 7> are
solutions to the ODE.

5 The solution curves corresponding to the initial conditions p(0) = 3 and p(0) = 0.5 are
below. If p(0) = 2 we have p(t) — 1.57 as t — oo, so a population of 2000 can never be 500.
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6 We are given (z¢,y0) = (1,0) and h = 0.1.

n 0 1 2 3 4 S
z, | 1.0 1.1 1.2 1.3 1.4 1.5
Y | 0.0000 | 0.1000 | 0.2090 | 0.3246 | 0.4441 | 0.5644

7 The equation is separable since

ety eTeV . €Y
y—1 y-1  y-1
Thus we have
/y— 1dy:/emdx,
ey
which yields
e +ye ¥ =c

for arbitrary constant c.

8 Writing the equation as ¢y’ = 2 cosx+/y + 1, we see the equation is separable. We get

/#dy = /2cosxdx.
Vy+1
This integrates easily to give
2v/y+1=2sinzx +c.
Now, y(m) = 0 implies that
2v/0+1=2sin7w + c,
or ¢ = 2. The (implicit) solution to the IVP is thus 2¢/y + 1 = 2sinz+2, or y = (sinx+1)*—1.



9 The equation may be written as

3 sin x
y+-y=— -3,
x x
which is the standard form for a Ist-order linear ODE. An integrating factor is
,U/(x> _ €f3/:rdx — 3z _ .3

Multiplying the ODE by 22 gives
23y’ + 32’y = xsinz — 327,
which becomes (23y)’ = zsinx — 3z* and thus
3
iy = /xsinxdx — g:cE’ +c.
Integration by parts gives

/xsinxdx =sinx — rcosT,

so that 2%y = sinaz — z cosz — £2° + ¢ and therefore
(2) = — (s S0+
r)=— (sinz —xcosx — —a° + ¢ .
4 x3 5

is the general solution.

10 The equation may be written as
3 1
"+ =t*Int+ —
T + ta: nt+ 2
which is the standard form for a Ist-order linear ODE. An integrating factor is
ﬂ(x) _ efS/tdt — 3
Multiplying the ODE by 3 gives t32’ + 3t?x = t° Int + t, which becomes (t3z)' = t°Int + ¢ and
thus .
thr = /t5lntdt+ §t2 +c.
By integration by parts we find that

1 1 t6 16
/t5lntdt:—t61nt—/—t5dt:—lnt——,
6 6 6 36

and so we have

3 ° 1,
B =—Int— — + -2 +c.
ST L
Letting t = 1 and # = 0 (the initial condition) gives 0 = —z= + % + ¢, so that ¢ = —3 and we
obtain
1 1 1 17
t)=t*Int— = |+ — — ——
®(0) =5 (n 6)+2t 3613

as the solution to the IVP.



11 Since the equation is exact there exists a function F(x,y) such that
F.(z,y) =cosxzcosy+2x and Fy(z,y)=—sinzsiny —2y. (1)
Integrate the first equation in (1) with respect to z to get

F(z,y) = /(cosxcosy +2z)dx + g(y) = sinz cosy + 2* + g(y). (2)

Differentiating this with respect to y yields

Fy(z,y) = —sinasiny + ¢'(y),
and so using the second equation in (1) we obtain

—sinxsiny — 2y = —sinxsiny + ¢'(y),
or simply ¢'(y) = —2y. Hence g(y) = —y* + ¢ for some arbitrary constant c;, and so (2)
becomes
F(z,y) =sinzcosy + 22 — y* + c1.

The general implicit solution to the ODE is therefore

sin x cos y + 2% — y2 +c1=co
for arbitrary co, which we can write simply as

sin z cos y + 22 — y2 =c

by consolidating the arbitrary constants ¢; and c,.

12 We have
M, — N, 2—dxy 2

N <x>:2x2y—x_ x’

2 1
p(r) = exp </ _Eda:> = e 2T — el

Multiplying the ODE by pu(x) yields the exact equation
B+ay) +2y—a )y =0.

There exists a function F' such that

SO

Fy(z,y)=3+22%y and F,(z,y)=2y—a "
Y

From the former equation comes

y
F(x,y) =3z — - +9(y),

so the latter equation implies

"= Jy) =2y = gly)=9*+a,

c1 arbitrary. The general solution to the ODE is F'(z,y) = co, where ¢ is arbitrary. That is,

3v— 2L+t =c,
T

—o g (y) =2y — "

where ¢ is the arbitrary constant deriving from ¢y — ¢;.



13 Multiply the ODE by z™y™:
(32 ggmynB)y g (pmetdyntlyyr —
For exactness we need M, = N,, or
(n + 2)a™ 3y — 2(n + 3)a™y"t? = (m + 4)x™ 3y

Matching coefficients of like terms, we find that we must have n+2 = m+4 and —2(n+3) = 0,
which solves to give m = —5 and n = —3. Thus an integrating factor is pu(x,y) = 7 5y~3, and
the ODE becomes

(@ =207") + (a7 y )y =0,
which is exact. We now find a function F' such that F,(z,y) = 272y~ — 227° and F,(z,y) =
2~ 'y~2. From the former equation we obtain

F(z,y) = / (z72y ' —227%) do = —a 'y + Lo+ g(y),
and from the latter equation comes
eyt = Fy(r,y) =27y 4 4'(y),
or ¢’(y) = 0. Thus ¢g(y) = ¢; for some constant ¢;, and we have
F(z,y) = -2 'y ' + %m“l + c.

The implicit solution to the ODE is therefore F'(x,y) = ¢y for arbitrary constant ¢y, which we

may write simply as o L
v —x Yy =c

by merging constant terms. Another solution is y = 0.



