
Math 250 Exam #1 Key (Summer 2013)

1 T ′(t) = k[M(t)−T (t)], or simply T ′ = k(M−T ), where k is the constant of proportionality
(not an arbitrary constant). Note: we could also write T ′ = k(T −M), which in practice would
result merely in the constant of proportionality k reversing sign.

2 We have

f(x, y) = 3x− 3
√
y − 1,

which is continuous everywhere. However

fy(x, y) = −1

3
(y − 1)−2/3 = − 1

3 3
√

(y − 1)2

is not continuous on the line y = 1 since the function is not defined there. The initial point
(2, 1) lies on this line, and so the Existence-Uniqueness Theorem does not imply that the initial
value problem has a unique solution.

3 Substitute 2e3t − e2t for θ in the equation to obtain

(2e3t − e2t)′′ − (2e3t − e2t)(2e3t − e2t)′ + 3(2e3t − e2t) = −2e2t

(18e3t − 4e2t)− (2e3t − e2t)(6e3t − 2e2t) + (6e3t − 3e2t) = −2e2t

18e3t − 4e2t − 12e6t + 10e5t − 2e4t + 6e3t − 3e2t = −2e2t

−12e6t + 10e5t − 2e4t + 24e3t − 7e2t = −2e2t

The last equation is not true for all t on any interval I ⊆ R, and so the function 2e3t − e2t is
not a solution to the ODE.

4 Substitute ϕ(x) = emx for y to obtain

2(emx)′′′ + 9(emx)′′ − 5(emx)′ = 0

2m3emx + 9m2emx − 5memx = 0

(2m3 + 9m2 − 5m)emx = 0

To satisfy the equation for all x in some interval I ⊆ R, it will be necessary to have

2m3 + 9m2 − 5m = 0.

Solving this equation for m, we have

m(2m− 1)(m+ 5) = 0

and thus m = 0, 1/2,−5. This shows that ϕ1(x) = 1, ϕ2(x) = ex/2, and ϕ3(x) = e−5x are
solutions to the ODE.

5 The solution curves corresponding to the initial conditions p(0) = 3 and p(0) = 0.5 are
below. If p(0) = 2 we have p(t)→ 1.5+ as t→∞, so a population of 2000 can never be 500.
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6 We are given (x0, y0) = (1, 0) and h = 0.1.

n 0 1 2 3 4 5
xn 1.0 1.1 1.2 1.3 1.4 1.5
yn 0.0000 0.1000 0.2090 0.3246 0.4441 0.5644

7 The equation is separable since

ex+y

y − 1
=

exey

y − 1
= ex · ey

y − 1
.

Thus we have ∫
y − 1

ey
dy =

∫
ex dx,

which yields

ex + ye−y = c

for arbitrary constant c.

8 Writing the equation as y′ = 2 cos x
√
y + 1, we see the equation is separable. We get∫

1√
y + 1

dy =

∫
2 cosx dx.

This integrates easily to give

2
√
y + 1 = 2 sin x+ c.

Now, y(π) = 0 implies that

2
√

0 + 1 = 2 sinπ + c,

or c = 2. The (implicit) solution to the IVP is thus 2
√
y + 1 = 2 sin x+2, or y = (sinx+1)2−1.
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9 The equation may be written as

y′ +
3

x
y =

sinx

x2
− 3x,

which is the standard form for a 1st-order linear ODE. An integrating factor is

µ(x) = e
∫
3/x dx = e3 lnx = x3.

Multiplying the ODE by x3 gives

x3y′ + 3x2y = x sinx− 3x4,

which becomes (x3y)′ = x sinx− 3x4 and thus

x3y =

∫
x sinx dx− 3

5
x5 + c.

Integration by parts gives ∫
x sinx dx = sinx− x cosx,

so that x3y = sinx− x cosx− 3
5
x5 + c and therefore

y(x) =
1

x3

(
sinx− x cosx− 3

5
x5 + c

)
.

is the general solution.

10 The equation may be written as

x′ +
3

t
x = t2 ln t+

1

t2
,

which is the standard form for a 1st-order linear ODE. An integrating factor is

µ(x) = e
∫
3/t dt = t3.

Multiplying the ODE by t3 gives t3x′ + 3t2x = t5 ln t+ t, which becomes (t3x)′ = t5 ln t+ t and
thus

t3x =

∫
t5 ln t dt+

1

2
t2 + c.

By integration by parts we find that∫
t5 ln t dt =

1

6
t6 ln t−

∫
1

6
t5 dt =

t6

6
ln t− t6

36
,

and so we have

t3x =
t6

6
ln t− t6

36
+

1

2
t2 + c.

Letting t = 1 and x = 0 (the initial condition) gives 0 = − 1
36

+ 1
2

+ c, so that c = −17
36

and we
obtain

x(t) =
1

6
t3
(

ln t− 1

6

)
+

1

2t
− 17

36t3

as the solution to the IVP.
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11 Since the equation is exact there exists a function F (x, y) such that

Fx(x, y) = cos x cos y + 2x and Fy(x, y) = − sinx sin y − 2y. (1)

Integrate the first equation in (1) with respect to x to get

F (x, y) =

∫
(cosx cos y + 2x)dx+ g(y) = sin x cos y + x2 + g(y). (2)

Differentiating this with respect to y yields

Fy(x, y) = − sinx sin y + g′(y),

and so using the second equation in (1) we obtain

− sinx sin y − 2y = − sinx sin y + g′(y),

or simply g′(y) = −2y. Hence g(y) = −y2 + c1 for some arbitrary constant c1, and so (2)
becomes

F (x, y) = sinx cos y + x2 − y2 + c1.

The general implicit solution to the ODE is therefore

sinx cos y + x2 − y2 + c1 = c2

for arbitrary c2, which we can write simply as

sinx cos y + x2 − y2 = c

by consolidating the arbitrary constants c1 and c2.

12 We have
My −Nx

N
(x) =

2− 4xy

2x2y − x
= −2

x
,

so

µ(x) = exp

(∫
−2

x
dx

)
= e−2 lnx =

1

x2
.

Multiplying the ODE by µ(x) yields the exact equation

(3 + x−2y) + (2y − x−1)y′ = 0.

There exists a function F such that

Fx(x, y) = 3 + x−2y and Fy(x, y) = 2y − x−1.
From the former equation comes

F (x, y) = 3x− y

x
+ g(y),

so the latter equation implies

−x−1 + g′(y) = 2y − x−1 ⇒ g′(y) = 2y ⇒ g(y) = y2 + c1,

c1 arbitrary. The general solution to the ODE is F (x, y) = c2, where c2 is arbitrary. That is,

3x− y

x
+ y2 = c,

where c is the arbitrary constant deriving from c2 − c1.
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13 Multiply the ODE by xmyn:

(xm+3yn+2 − 2xmyn+3) + (xm+4yn+1)y′ = 0.

For exactness we need My = Nx, or

(n+ 2)xm+3yn+1 − 2(n+ 3)xmyn+2 = (m+ 4)xm+3yn+1.

Matching coefficients of like terms, we find that we must have n+2 = m+4 and −2(n+3) = 0,
which solves to give m = −5 and n = −3. Thus an integrating factor is µ(x, y) = x−5y−3, and
the ODE becomes

(x−2y−1 − 2x−5) + (x−1y−2)y′ = 0,

which is exact. We now find a function F such that Fx(x, y) = x−2y−1 − 2x−5 and Fy(x, y) =
x−1y−2. From the former equation we obtain

F (x, y) =

∫ (
x−2y−1 − 2x−5

)
dx = −x−1y−1 + 1

2
x−4 + g(y),

and from the latter equation comes

x−1y−2 = Fy(x, y) = x−1y−2 + g′(y),

or g′(y) = 0. Thus g(y) = c1 for some constant c1, and we have

F (x, y) = −x−1y−1 + 1
2
x−4 + c1.

The implicit solution to the ODE is therefore F (x, y) = c2 for arbitrary constant c2, which we
may write simply as

1
2
x−4 − x−1y−1 = c

by merging constant terms. Another solution is y ≡ 0.


