
Math 250 Exam #3 Key (Summer 2012)

1. The model for the mass-spring system is 0.25y′′ + 2y′ + 8y = 0, y(0) = −0.50, y′(0) = −2.
The auxiliary equation is 0.25r2+2r+8 = 0, or r2+8r+32 = 0, which has roots α±iβ = −4±4i.
Thus the general solution to the ODE is

y(t) = eαt(c1 cos βt+ c2 sin βt) = e−4t(c1 cos 4t+ c2 sin 4t).

From the initial condition y(0) = −0.50 comes c1 = −0.50, and from

y′(t) = −4e−4t(c1 cos 4t+ c2 sin 4t) + e−4t(−4c1 sin 4t+ 4c2 cos 4t) (1)

and the initial condition y′(0) = −2 comes

−4e0(c1 cos 0 + c2 sin 0) + e0(−4c1 sin 0 + 4c2 cos 0) = −2,

which simplifies as −4c1 + 4c2 = −2 and finally c2 = −1. Therefore

y(t) = −e−4t(0.50 cos 4t+ sin 4t).

The global minimum value of the function y(t) will be t∗ = min{t ∈ [0,∞) : y′(t) = 0}.
Setting y′(t) = 0, from (1) we obtain

−4e−4t(−0.50 cos 4t− sin 4t) + e−4t(2 sin 4t− 4 cos 4t) = 0,

which becomes 6 sin 4t− 2 cos 4t = 0, so that tan 4t = 1/3 and finally
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Setting n = 0 will give
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)
≈ 0.08.

That is, the object attains its maximum displacement to the left at time 0.08 sec.

2. Equation of motion is

y(t) ≈ e−1.25t(0.04689 cos 6.89t+ 0.00848 sin 6.89t) + 0.00311 cos t+ 0.00016 sin t.

3. Applying the integration by parts technique,
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4. Using the table provided,

L
[
t2e5t

]
(s) =

2!
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=
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(s− 5)3

5. Using the table provided,
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6. Use a trigonometric identity for this, along with the table provided:
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7. Partial fraction decomposition is necessary: we have
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=
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and so
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= 5e2 + 2e2t cos 3t− 5e2t sin 3t


