## MATH 250 EXAM #1 KEY (SUMMER 2012)

- 1. T'(t) = k[M(t) T(t)], or simply T' = k(M T).
- **2.** Second-order ordinary nonlinear differential equation with independent variable t and dependent variable y.
- 3. Substitute  $2e^{3t} e^{2t}$  for  $\theta$  in the equation to obtain

$$(2e^{3t} - e^{2t})'' - (2e^{3t} - e^{2t})(2e^{3t} - e^{2t})' + 3(2e^{3t} - e^{2t}) = -2e^{2t}$$

$$(18e^{3t} - 4e^{2t}) - (2e^{3t} - e^{2t})(6e^{3t} - 2e^{2t}) + (6e^{3t} - 3e^{2t}) = -2e^{2t}$$

$$18e^{3t} - 4e^{2t} - 12e^{6t} + 10e^{5t} - 2e^{4t} + 6e^{3t} - 3e^{2t} = -2e^{2t}$$

$$-12e^{6t} + 10e^{5t} - 2e^{4t} + 24e^{3t} - 7e^{2t} = -2e^{2t}$$

The last equation is not true for all t on any interval  $I \subseteq \mathbb{R}$ , and so the function  $2e^{3t} - e^{2t}$  is not a solution to the ODE.

4. Substitute  $\varphi(x) = e^{mx}$  for y to obtain

$$(e^{mx})''' + 3(e^{mx})'' + 2(e^{mx})' = 0$$
  

$$m^3 e^{mx} + 3m^2 e^{mx} + 2me^{mx} = 0$$
  

$$(m^3 + 3m^2 + 2m)e^{mx} = 0$$

To satisfy the equation for all x in some interval  $I \subseteq \mathbb{R}$ , it will be necessary to have  $m^3 + 3m^2 + 2m = 0$ . Solving this equation for m, we have: m(m+1)(m+2) = 0 and thus m = 0, -1, -2. This show that  $\varphi_1(x) = 1$ ,  $\varphi_2(x) = e^{-x}$ , and  $\varphi_3(x) = e^{-2x}$  are solutions to the ODE.

**5.** The solution curves corresponding to the initial conditions v(0) = 0, v(0) = 2, and v(0) = 4 are below. It can be seen that  $v(t) \to 2$  as  $t \to \infty$ .



**6.** We are given  $(x_0, y_0) = (1, 0)$  and h = 0.1.

| $\overline{n}$   | 0      | 1      | 2      | 3      | 4      | 5      |
|------------------|--------|--------|--------|--------|--------|--------|
| $\overline{x_n}$ | 1.0    | 1.1    | 1.2    | 1.3    | 1.4    | 1.5    |
| $y_n$            | 0.0000 | 0.1000 | 0.2090 | 0.3246 | 0.4441 | 0.5644 |

7. The equation is separable:

$$x'(t) = \frac{e^{2x}}{x} \cdot \frac{t}{e^t}.$$

We obtain

$$\int xe^{2x} \, dx = \int te^{-t} \, dt,$$

which by integration by parts becomes

$$\frac{x}{2}e^{2x} - \frac{1}{4}e^{2x} = -te^{-t} - e^{-t} + c.$$

Multiplying by 4 and rearranging then gives a one-parameter family of implicit solutions to the ODE:  $(2x-1)e^{2x} + 4e^{-t}(t+1) = c$ .

**8.** Writing the equation as  $y' = 2\cos x\sqrt{y+1}$ , we see the equation is separable. We get

$$\int \frac{1}{\sqrt{y+1}} \, dy = \int 2\cos x \, dx.$$

This integrates easily to give  $2\sqrt{y+1} = 2\sin x + c$ . Now,  $y(\pi) = 0$  implies that  $2\sqrt{0+1} = 2\sin \pi + c$ , or c = 2. The (implicit) solution to the IVP is thus  $2\sqrt{y+1} = 2\sin x + 2$ , or  $y = (\sin x + 1)^2 - 1$ .

**9.** The equation may be written as  $y' + \frac{3}{x}y = \frac{\sin x}{x^2} - 3x$ , which is the standard form for a 1st-order linear ODE. An integrating factor is

$$\mu(x) = e^{\int 3/x \, dx} = e^{3 \ln x} = x^3.$$

Multiplying the ODE by  $x^3$  gives  $x^3y' + 3x^2y = x \sin x - 3x^4$ , which becomes  $(x^3y)' = x \sin x - 3x^4$  and thus

$$x^{3}y = \int x \sin x \, dx - \frac{3}{5}x^{5} + c.$$

Integration by parts gives

$$\int x \sin x \, dx = \sin x - x \cos x,$$

so that  $x^3y = \sin x - x\cos x - \frac{3}{5}x^5 + c$  and therefore

$$y(x) = \frac{1}{x^3} \left( \sin x - x \cos x - \frac{3}{5} x^5 + c \right).$$

is the general solution.

10. The equation may be written as

$$x' + \frac{3}{t}x = t^2 \ln t + \frac{1}{t^2},$$

which is the standard form for a 1st-order linear ODE. An integrating factor is

$$\mu(x) = e^{\int 3/t \, dt} = t^3.$$

Multiplying the ODE by  $t^3$  gives  $t^3x' + 3t^2x = t^5 \ln t + t$ , which becomes  $(t^3x)' = t^5 \ln t + t$  and thus

$$t^3x = \int t^5 \ln t \, dt + \frac{1}{2}t^2 + c.$$

By integration by parts we find that

$$\int t^5 \ln t \, dt = \frac{1}{6} t^6 \ln t - \int \frac{1}{6} t^5 \, dt = \frac{t^6}{6} \ln t - \frac{t^6}{36},$$

and so we have

$$t^3x = \frac{t^6}{6}\ln t - \frac{t^6}{36} + \frac{1}{2}t^2 + c.$$

Letting t=1 and x=0 (the initial condition) gives  $0=-\frac{1}{36}+\frac{1}{2}+c$ , so that  $c=-\frac{17}{36}$  and we obtain

$$x(t) = \frac{1}{6}t^3 \left( \ln t - \frac{1}{6} \right) + \frac{1}{2t} - \frac{17}{36t^3}$$

as the solution to the IVP.

11. Since the equation is exact, there exists a function F(x,y) such that

$$F_x(x,y) = 2x + \frac{y}{1+x^2y^2}$$
 and  $F_y(x,y) = \frac{x}{1+x^2y^2} - 2y$ .

Integrate the first equation with respect to x:

$$F(x,y) = \int \left(2x + \frac{y}{1+x^2y^2}\right) dx + g(y) = x^2 + \frac{1}{y} \int \left(\frac{1}{(1/y)^2 + x^2}\right) dx + g(y)$$
$$= x^2 + \frac{1}{y} \cdot \frac{1}{1/y} \arctan\left(\frac{x}{1/y}\right) + g(y) = x^2 + \arctan(xy) + g(y).$$

Now from the second equation we have

$$\frac{\partial}{\partial y} \left[ x^2 + \arctan(xy) + g(y) \right] = \frac{x}{1 + x^2 y^2} - 2y,$$

and thus

$$\frac{x}{1 + (xy)^2} + g'(y) = \frac{x}{1 + x^2y^2} - 2y.$$

From this we obtain g'(y) = -2y, and finally  $g(y) = -y^2 + c_1$ . Thus

$$F(x,y) = x^2 + \arctan(xy) - y^2 + c_1.$$

The implicit solution to the ODE is of the form  $F(x,y) = c_2$ ; that is,

$$x^2 + \arctan(xy) - y^2 + c_1 = c_2,$$

or simply

$$x^2 - y^2 + \arctan(xy) = c$$

if we combine the arbitrary constants  $c_1$  and  $c_2$ .

**12.** Here  $M(x,y) = y^2 + 2xy$  and  $N(x,y) = -x^2$ . Now, since

$$\frac{N_x - M_y}{M} = \frac{-2x - (2y + 2x)}{y^2 + 2xy} = -\frac{2}{y}$$

depends only on y, we have as an integrating factor

$$\mu(y) = \exp\left(-\frac{2}{y}\right) = \frac{1}{y^2}.$$

Multiplying the ODE by  $y^{-2}$  gives us the exact equation

$$\left(1 + \frac{2x}{y}\right) - \frac{x^2}{y^2}y' = 0,$$

where  $\hat{M}(x,y) = 1 + 2x/y$  and  $\hat{N}(x,y) = -x^2$ . There exists a function F such that  $F_x = \hat{M}$  and  $F_y = \hat{N}$ , and the implicit solution to the ODE will be of the form F(x,y) = c. From  $F_x = \hat{M}$  we obtain

$$F(x,y) = \int (1 + 2x/y) \, dx + g(y) = x + x^2/y + g(y),$$

and then from  $F_y = \hat{N}$  we obtain

$$-x^2/y^2 + g'(y) = -x^2/y^2.$$

Hence g'(y) = 0, so that  $g(y) = \hat{c}$  for some arbitrary constant  $\hat{c}$ . Therefore we have  $F(x,y) = x + x^2/y + \hat{c}$ , and so the solution is

$$x + \frac{x^2}{y} + \hat{c} = c.$$

The constant  $\hat{c}$  can be absorbed by c to get simply  $x + x^2y^{-1} = c$ .

Another solution is  $y \equiv 0$ , which is not included in the one-parameter family of functions  $x + x^2y^{-1} = c$ .