
Math 250 Exam #4 Key (Spring 2017)

1 This is a nonlinear equation with y missing. Let u = y′, so u′ = y′′ and the ODE becomes
x2u′ + u2 = 0. This is separable, yields∫

1

u2
du = −

∫
1

x2
dx ⇒ y′ = u = − x

1 + αx

for arbitrary α. If α ̸= 0,

y =

∫
x

αx− 1
dx =

1

α

∫ (
1 +

1

αx− 1

)
dx =

x

α
+

1

α2
ln |αx− 1|+ β

for arbitrary β. If α = 0,

y′ = −x ⇒ y = −1

2
x2 + β.

Therefore the solution set of the ODE contains the family of functions

y =


αx+ ln |αx− 1|

α2
+ β, α ̸= 0, β ∈ R

−x2

2
+ β, β ∈ R.

2 The equation is nonlinear with xmissing, so we cast y in the role of the independent variable
and make the substitution u = y′ = dy/dx. Then

y′′ = u′ =
du

dx
=

du

dy

dy

dx
= u

du

dy
,

and the ODE becomes
u

(1 + u2)3/2
du

dy
= κ.

The equation is separable, giving∫
u

(1 + u2)3/2
du =

∫
κ dy ⇒ − 1√

1 + u2
= κy − β

where β is an arbitrary constant. Letting β = 0, we get

1

1 + (y′)2
= (κy)2 ⇒ y′ = ±

√
1− (κy)2

(κy)2
= ±

√
1− (κy)2

κy
.

This is again a separable equation, becoming

±
∫

κy√
1− (κy)2

dy =

∫
dx.

Making the substitution w = 1− (κy)2 yields

±
∫

−1

2κ
√
w
dw = x− α

for arbitrary α. Let α = 0, so that

±
√

1− (κy)2

κ
= x.



2

With the ± we have the right and left halves of a circle. Squaring and doing some algebra gives

x2 + y2 =
1

κ2
,

a circle with center (0, 0) and radius 1/κ. Setting κ ≡ 1 yields y2 = 1− x2. One choice for the
function f is therefore f(x) =

√
1− x2.

3 From Hooke’s Law we have 10 = k(2), and so k = 5 lb/ft is the spring constant. The mass
m is given by W = mg, so m = W/g = 10/32 = 5/16 slug. The equation of motion is thus

5

16
y′′ + βy′ + 5y = 0 ⇒ 5y′′ + 16βy′ + 80y = 0.

The auxiliary equation is
5r2 + 16βr + 80 = 0. (1)

The mass-spring system is overdamped if (1) has distinct real roots, critically damped if (1)
has a double root, and underdamped if (1) has complex conjugate roots. By the quadratic
equation we have

r =
−16β ±

√
(16β)2 − 4(5)(80)

2(5)
=

−8β ± 4
√

4β2 − 25

5
,

and so the system is overdamped if 4β2 − 25 > 0, which gives β > 5
2
. Critical damping occurs

if β = 5
2
, and underdamping occurs if 0 < β < 5

2
.

4 Substituting

y =
∞∑
n=0

cnx
n and y′ =

∞∑
n=1

ncnx
n−1

into the ODE gives
∞∑
n=1

ncnx
n−1 = x2

∞∑
n=0

cnx
n ⇒ c1 + 2c2x+

∞∑
n=3

ncnx
n−1 =

∞∑
n=0

cnx
n+2,

and then

c1 + 2c2x+
∞∑
n=2

(n+ 1)cn+1x
n =

∞∑
n=2

cn−2x
n.

Now we have

c1 + 2c2x+
∞∑
n=2

[
(n+ 1)cn+1 − cn−2

]
xn = 0

for all x in some open interval, implying that c1 = c2 = 0, and (n + 1)cn+1 − cn−2 = 0 for all
n ≥ 2. This leaves c0 to be arbitrary, and

c3 =
c0
3
, c4 = 0, c5 = 0, c6 =

c3
6

=
c0
3 · 6

, c7 = 0, c8 = 0, c9 =
c6
9

=
c0

3 · 6 · 9
,

and so on. Thus

y = c0 +
c0
3
x3 +

c0
3 · 6

x6 +
c0

3 · 6 · 9
x9 +

c0
3 · 6 · 9 · 12

x12 + · · · =
∞∑
n=0

c0x
3n

3n n!
,



3

or equivalently

y = c

∞∑
n=0

1

n!

(
x3

3

)n

.

for arbitrary c ∈ R. (Solving the ODE by separation of variables gives y = cex
3/3, which is the

same thing.)

5 Substituting y =
∑∞

n=0 cnx
n into the ODE gives

∞∑
n=2

n(n− 1)cnx
n−2 + x

∞∑
n=1

ncnx
n−1 − 2

∞∑
n=0

cnx
n = 0,

whence comes
∞∑
n=0

(n+ 1)(n+ 2)cn+2x
n +

∞∑
n=0

ncnx
n −

∞∑
n=0

2cnx
n = 0,

and then
∞∑
n=0

[
(n+ 1)(n+ 2)cn+2 + ncn − 2cn

]
xn = 0.

This implies that
(n+ 1)(n+ 2)cn+2 + ncn − 2cn = 0,

for all n ≥ 0, and hence

cn+2 =
2− n

(n+ 1)(n+ 2)
cn.

We now wind up our propeller beanies and calculate

c2 = c0, c3 =
1

3!
c1, c4 = 0, c5 =

−1

5!
c1, c6 = 0, c7 =

3

7!
c1, c8 = 0,

c9 =
−3 · 5
9!

c1, c10 = 0, c11 =
3 · 5 · 7
11!

c1,

and so on, giving

y = c0 + c1x+ c0x
2 +

1

3!
c1x

3 − 1

5!
c1x

5 +
3

7!
c1x

7 − 3 · 5
9!

c1x
9 +

3 · 5 · 7
11!

c1x
11 + · · ·

= c0(1 + x2) + c1

(
x+

1

3!
x3 − 1

5!
x5 +

3

7!
x7 − 3 · 5

9!
x9 +

3 · 5 · 7
11!

x11 + · · ·
)

= c0(1 + x2) + c1

(
x+

x3

6
+

∞∑
n=1

(−1)n[1 · 3 · 5 · · · (2n− 1)]x2n+3

(2n+ 3)!

)
. (2)

This is the general solution to the ODE. Now we employ the initial condition y(0) = 1 to obtain
c0 = 1. Putting this into (2) and differentiating yields

y′ = 2x+ c1

(
1 +

x2

2
+

∞∑
n=1

(−1)n[1 · 3 · 5 · · · (2n− 1)]x2n+2

(2n+ 2)!

)
.

Our initial condition y′(0) = 0 clearly implies c1 = 0. Therefore the solution to the IVP is

y = 1 + x2.


