
Math 250 Exam #2 Key (Spring 2015)

1 Newton’s Law of Cooling states that T ′(t) = k[T (t)−Ta]. Here we have Ta = 5, T (1) = 55,
and T (5) = 30. Now, noting that T (t) ≥ 5 for all t ≥ 0,

T ′ = k(T − 5) ⇒
∫

1

T − 5
dT =

∫
k dt ⇒ ln |T − 5| = kt+ c ⇒ T − 5 = ekt+c,

and so
T (t) = 5 + Cekt.

From T (1) = 55 we obtain

55 = 5 + Cek ⇒ Cek = 50 ⇒ C = 50e−k,

and so
T (t) = 5 + 50e−kekt = 5 + 50ek(t−1).

From T (5) = 30 we obtain

30 = 5 + 50e4k ⇒ e4k =
1

2
⇒ 4k = ln

(
1

2

)
⇒ k =

1

4
ln

(
1

2

)
≈ −0.173.

Thus

T (t) = 5 + 50e(t−1) ln(0.5
1/4) = 5 + 50

(
1

2

)(t−1)/4

= 5 + 50
4

√
1

2t−1 .

The temperature in the house is given by

T (0) = 5 + 50
4

√
1

20−1 ≈ 64.5◦F.

2 Let x(t) be the mass of sugar (in kilograms) in the tank at time t (in minutes), so that
x(0) = 5. The volume of solution in the tank is V (t) = 400 + 5t. The rate of change of the
amount of sugar in the tank at time t is:

x′(t) = (rate sugar enters Tank 1)− (rate sugar leaves Tank 1)

=

(
0.05 kg

1 L

)(
20 L

1 min

)
−
(
x(t) kg

V (t) L

)(
15 L

1 min

)
= 1− 15x(t)

400 + 5t
= 1− 3x(t)

80 + t
.

Thus we have a linear first-order ODE:

x′ +
3x

t+ 80
= 1.

To solve this equation, we multiply by the integrating factor

µ(t) = exp

(∫
3

t+ 80
dt

)
= e3 ln(t+80) = (t+ 80)3

to obtain
(t+ 80)3x′ + 3(t+ 80)2x = (t+ 80)3,

which becomes [
(t+ 80)3x

]′
= (t+ 80)3
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and thus

(t+ 80)3x =

∫
(t+ 80)3 dt =

1

4
(t+ 80)4 + c.

From this we get a general explicit solution to the ODE,

x(t) =
t

4
+

c

(t+ 80)3
+ 20.

To determine c we use the initial condition x(0) = 5, giving c = −15(803), and so

x(t) =
t

4
− 15

(
80

t+ 80

)3
+ 20.

The amount of sugar in the tank after 30 minutes is

x(30) =
30

4
− 15

(
80

110

)3
+ 20 ≈ 21.7 kg.

3 Suppose c1, c2, c3 are constants such that c1f + c2g + c3h ≡ 0 on (−∞,∞). That is,

c1f(x) + c2g(x) + c3h(x) = 0

for all x ∈ R, and hence
c1x+ c2(x− 1) + c3(x+ 3) = 0

for all x ∈ R. If c2 = 3 and c3 = 1 then we get

c1x+ 3(x− 1) + (x+ 3) = 0,

and hence c1x+ 4x = 0. This last equation is satisfied on (−∞,∞) if we let c1 = −4. That is,
c1f + c2g + c3h ≡ 0 on (−∞,∞) is possible if we choose c1 = −4, c2 = 3, and c3 = 1. Since
c1f + c2g + c3h ≡ 0 on (−∞,∞) admits a solution other than c1 = c2 = c3 = 0, we conclude
that f , g, and h are linearly dependent on (−∞,∞).

4 We have y(x) = c1 + c2x
2 and y′(x) = 2c2x. From y(0) = 1 we get 1 = c1 + c2(0

2) = c1, or
c1 = 1; and from y′(1) = 6 we get 6 = 2c2(1), or c2 = 3. Therefore a solution to the boundary
value problem is y = 1 + 3x2.

5 A second solution y2 will be of the form

y2(x) = u(x)y1(x) = xu(x) sin(lnx),

which we’ll write simply as y = xu sin(lnx). Now,

y′ = xu · cos(lnx)

x
+ (u+ xu′) · sin(lnx) = u cos(lnx) + u sin(lnx) + xu′ sin(lnx),

and

y′′ =
u cos(lnx)− u sin(lnx)

x
+ 2u′ cos(lnx) + 2u′ sin(lnx) + xu′′ sin(lnx).

Oh dear. Oh deary me. Substituting all this into x2y′′ − xy′ + 2y = 0 gives

x
[
u cos(lnx)− u sin(lnx)

]
+ x2

[
2u′ cos(lnx) + 2u′ sin(lnx) + xu′′ sin(lnx)

]
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− x
[
u cos(lnx) + u sin(lnx) + xu′ sin(lnx)

]
+ 2xu sin(lnx) = 0,

whence
x3 sin(lnx)u′′ + x2

[
sin(lnx) + 2 cos(lnx)

]
u′ = 0.

Letting w = u′ and dividing out x3 sin(lnx) gives

w′ +
sin(lnx) + 2 cos(lnx)

x sin(lnx)
w = 0.

Another way to write this is

w′ +

(
1

x
+

2 cos(lnx)

x sin(lnx)

)
w = 0.

This is separable:

−
∫

1

w
dw =

∫ (
1

x
+

2 cos(lnx)

x sin(lnx)

)
dx = ln |x|+ 2

∫
cos(lnx)

x sin(lnx)
dx. (1)

Making the substitution α = lnx, and then the substitution β = sinα, we have∫
cos(lnx)

x sin(lnx)
dx =

∫
cosα

sinα
dα =

∫
1

β
dβ = ln |β| = ln | sinα| = ln | sin(lnx)|.

Now (1) becomes

− ln |u′| = − ln |w| = ln(x) + 2 ln | sin(lnx)|+ c = ln
(
x sin2(lnx)

)
+ c,

where |x| = x since it’s clear early on that we must have x > 0. Choosing c = 0, we then get

1

|u′|
= x sin2(lnx) ⇒ |u′| = 1

x sin2(lnx)
⇒ u′(x) = ±csc2(lnx)

x
.

We can choose u′(x) = −x−1 csc2(lnx), so, making the substitution α = lnx again, we have

u(x) = −
∫

csc2(lnx)

x
dx = −

∫
csc2 α dα = cot(α) + c = cot(lnx) + c.

Again choosing c = 0, we obtain u(x) = cot(ln x), and so

y2(x) = x cot(lnx) sin(lnx) = x cos(lnx)

is a second solution to the ODE. This solution is long, but can be made shorter by using the
formula in the book.

6 The auxiliary equation 2r2 + 2r + 1 = 0 has roots −1
2
± 1

2
i, and so the general solution is

y(x) = e−x/2
(
c1 cos(x/2) + c2 sin(x/2)

)
.

This makes up for Problem (5) a little bit.

7 The auxiliary equation r3 − 6r2 + 12r− 8 = 0. It can be seen by inspection that r = 2 is a
root. With a little synthetic division,

2 1 −6 12 −8
2 −8 8

1 −4 4 0
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we obtain the factorization (r − 2)(r2 − 4r + 4) = 0, and thus (r − 2)(r − 2)(r − 2) = 0. That
is, 2 is a root of the auxiliary equation with multiplicity 3. The general solution is thus

y(x) = c1e
2x + c2xe

2x + c3x
2e2x = (c1 + c2x+ c3x

2)e2x.

8 The given general solution results from an auxiliary equation having root 0 with multiplicity
2, and root 8 with multiplicity 1. That is, r2(r − 8) = 0, or r3 − 8r2 = 0. A suitable ODE is

y′′′ − 8y′′ = 0.


