
Math 250 Exam #3 Key (Spring 2014)

1a We have y′′ + y′ + 4y = et + e−t.

Auxiliary equation: r2 + r + 4 = 0; roots: −1

2
±
√

15

2
i.

Start with equation y′′ + y′ + 4y = et, with nonhomogeneity f(t) = et. Since α = 1 is not
a root of the auxiliary equation, a particular solution has form y1(t) = Aet. Substituting into
ODE:

Aet + (Aet)′ + 4(Aet)′′ = et ⇒ 6Aet = et ⇒ A =
1

6
,

so y1(t) = 1
6
et.

Next we have y′′ + y′ + 4y = e−t, with nonhomogeneity f(t) = e−t. Since α = −1 is not a
root of the auxiliary equation, a particular solution has form y2(t) = Ae−t. Substituting into
ODE:

Ae−t + (Ae−t)′ + 4(Ae−t)′′ = e−t ⇒ 4Ae−t = e−t ⇒ A =
1

4
,

so y2(t) = 1
4
e−t.

By Superposition Principle a particular solution to the original equation is

yp(t) =
1

6
et +

1

4
e−t.

The general solution is thus

y(t) =
1

6
et +

1

4
e−t + e−t/2

(
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)
.

1b The auxiliary equation r2 + 2r + 5 = 0 has roots −1 ± 2i. The nonhomogeneity has the
factor eαt cos βt with α − 1 and β = 2, and since α + βi = −1 + 2i is a root of the auxiliary
equation, we take s = 1 in the Method of Undetermined Coefficients. Thus a particular solution
has form

yp(t) = Ate−t cos 2t+Bte−t sin 2t.

Now y′′p(t) + 2y′p(t) + 5yp(t) = 4e−t cos 2t becomes

(−4A sin 2t+ 4B cos 2t)e−t = (4 cos 2t)e−t,

which shows that A = 0 and B = 1, and therefore

yp(t) = te−t sin 2t.

The general solution is thus

y(t) = te−t sin 2t+ e−t(c1 cos 2t+ c2 sin 2t). (1)

Next, substituting the initial condition y(0) = 1 into (1) yields c1 = 1. Substituting the
initial condition y′(0) = 0 into the derivative of (1) yields c2 = 1

2
. We now obtain the solution

to the IVP:

y(t) = te−t sin 2t+ e−t
(
cos 2t+ 1

2
sin 2t

)



2

2 The auxiliary equation r2−2r+1 = 0 has double root 1, so the corresponding homogeneous
equation y′′−2y′+1 = 0 has linearly independent solutions y1(t) = et and y2(t) = tet, and thus

y′1(t) = et and y′2(t) = (1 + t)et.

Now, since a2 = 1 and f(t) = (1 + t2)−1et, we have

v1(t) =

∫
−tet · (1 + t2)−1et

e2t
dt = −

∫
t

1 + t2
dt = −1

2
ln(1 + t2),

and

v2(t) =

∫
et · (1 + t2)−1et

e2t
dt =

∫
1

1 + t2
dt = tan−1(t).

Hence a particular solution to the ODE is

yp(t) = v1(t)y1(t) + v2(t)y2(t) = −1
2
et ln(1 + t2) + tet tan−1(t).

General solution is therefore

y(t) =
[
−1

2
ln(1 + t2) + t tan−1(t) + c1t+ c2

]
et.

3a From the IVP
1
8
y′′ + 2y′ + 16y = 0, y(0) = −3

4
, y′(0) = −2

comes the equation of motion:

y(t) =
(
−3

4
cos 8t− sin 8t

)
e−8t. (2)

3b Find the smallest t > 0 such that y′(t) = 0. Differentiating (2), we get

(6 sin 8t− 8 cos 8t)e−8t − 8
(
−3

4
cos 8t− sin 8t

)
e−8t = 0,

whence
7 sin 8t− cos 8t = 0. (3)

Any value for t that gives cos 8t = 0 will give sin 8t = ±1 and hence will not be a solution to
(3), so we can safely divide (3) by cos 8t to obtain tan 8t = 1

7
, and thus the smallest positive

solution is
t = 1

8
tan−1

(
1
7

)
≈ 0.01774.

That is, the object is maximally displaced to the left at time t = 0.01774 s, when the displace-
ment is

y(0.01774) = −0.767 m

by equation (2).

3c To find the quasiperiod, just double the time elapsed between two successive instances
when the object passes through the equilibrium position y = 0. Setting y(t) = 0, by (2) we
have

−3
4

cos 8t− sin 8t = 0 ⇒ 3 + 4 tan 8t = 0 ⇒ tan 8t = −3
4
.

The function tan 8t is periodic with period π/8, and so the quasiperiod is π/4 and the quasi-
frequency is 4/π.


