
Math 250 Exam #1 Key (Spring 2014)

1 Substitute ϕ(x) = xm for y to obtain

3x2 ·m(m− 1)xm−2 + 11x ·mxm−1 − 3xm = 0

(3m2 − 3m)xm + 11mxm − 3xm = 0

(3m2 + 8m− 3)xm = 0

To satisfy the equation for all x in some interval I ⊆ R, it will be necessary to have

3m2 + 8m− 3 = 0.

Solving this equation for m, we have

(3m− 1)(m+ 3) = 0

and thus m = 1/3,−3. This shows that ϕ1(x) = 3
√
x and ϕ2(x) = x−3 are solutions to the ODE

(each valid on (−∞, 0) ∪ (0,∞), incidentally).

2 We have

f(x, y) = 4x2 + 3
√

2− y,
which is continuous throughout R2. However

fy(x, y) =
1

3
(2− y)−2/3 =

1

3 3
√

(2− y)2

is not continuous on the line y = 2 since fy is not defined there. The initial point (−1, 2) lies
on this line, and so the Existence-Uniqueness Theorem does not imply that the initial value
problem has a unique solution.

3 The solution curves corresponding to the initial conditions v(0) = 0, v(0) = 2, and v(0) = 4
are below. It can be seen that v(t)→ 2 as t→∞.
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4 We are given (x0, y0) = (1, 0) and h = 0.2.
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n 0 1 2 3 4
xn 1.0 1.2 1.4 1.6 1.8
yn 0 0 0 0 0

5 Rewriting the equation as

y′ = −y2ecosx sinx

shows it to be separable. We obtain

−
∫

1

y2
dy =

∫
ecosx sinx dx.

Let u = cosx in the integral at right, so

1

y
= −

∫
eudu = −eu + c = −ecosx + c

for arbitrary constant c. That is,

y =
1

c− ecosx
.

6 Writing the equation as y′ = 2 cos x
√
y + 1, we see the equation is separable. We get∫

1√
y + 1

dy =

∫
2 cosx dx.

This integrates easily to give

2
√
y + 1 = 2 sin x+ c.

Now, y(π) = 0 implies that

2
√

0 + 1 = 2 sinπ + c,

or c = 2. The (implicit) solution to the IVP is thus

2
√
y + 1 = 2 sin x+ 2,

or y = (sinx+ 1)2 − 1.

7 The equation may be written as

y′ +
3

x
y =

sinx

x2
− 3x,

which is the standard form for a 1st-order linear ODE. An integrating factor is

µ(x) = e
∫
3/x dx = e3 lnx = x3.

Multiplying the ODE by x3 gives

x3y′ + 3x2y = x sinx− 3x4,
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which becomes (x3y)′ = x sinx− 3x4 and thus

x3y =

∫
x sinx dx− 3

5
x5 + c.

Integration by parts gives ∫
x sinx dx = sinx− x cosx,

so that x3y = sinx− x cosx− 3
5
x5 + c and therefore

y(x) =
1

x3

(
sinx− x cosx− 3

5
x5 + c

)
.

is the general solution.

8 The equation may be written as

x′ +
3

t
x = t2 ln t+

1

t2
,

which is the standard form for a 1st-order linear ODE. An integrating factor is

µ(x) = e
∫
3/t dt = t3.

Multiplying the ODE by t3 gives t3x′ + 3t2x = t5 ln t+ t, which becomes (t3x)′ = t5 ln t+ t and
thus

t3x =

∫
t5 ln t dt+

1

2
t2 + c.

By integration by parts we find that∫
t5 ln t dt =

1

6
t6 ln t−

∫
1

6
t5 dt =

t6

6
ln t− t6

36
,

and so we have

t3x =
t6

6
ln t− t6

36
+

1

2
t2 + c.

Letting t = 1 and x = 0 (the initial condition) gives 0 = − 1
36

+ 1
2

+ c, so that c = −17
36

and we
obtain

x(t) =
1

6
t3
(

ln t− 1

6

)
+

1

2t
− 17

36t3

as the solution to the IVP.

9 We have

M(x, y) = 1 + ln y and N(x, y) =
x

y
.

Since the equation is exact there exists a function F (x, y) such that Fx = M and Fy = N ; that
is,

Fx(x, y) = 1 + ln y and Fy(x, y) =
x

y
. (1)
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Integrate the first equation in (1) with respect to x:

F (x, y) =

∫
(1 + ln y)dx+ g(y) = x(1 + ln y) + g(y). (2)

Differentiating this with respect to y yields

Fy(x, y) =
x

y
+ g′(y),

and so using the second equation in (1) we obtain
x

y
+ g′(y) =

x

y
,

or simply g′(y) = 0. Hence g(y) = c1 for some arbitrary constant c1, and so (2) becomes

F (x, y) = x(1 + ln y) + c1.

The general implicit solution to the ODE is therefore

x(1 + ln y) + c1 = c2

for arbitrary c2, which we can write simply as

x+ x ln y = c

by consolidating the arbitrary constants c1 and c2.


