
Math 250 Exam #2 Key (Spring 2012)

1. Here M(x, y) = x4 − x+ y and N(x, y) = −x, so (My −Nx)/N = −2/x is independent of
y and we can let

µ(x) = exp

(∫
My −Nx

N
dx

)
= exp

(
−
∫

2

x
dx

)
= e−2 ln |x| = x−2

be an integrating factor. Multiplying the ODE by µ(x) gives(
x2 − 1

x
+

y

x2

)
− 1

x
y′ = 0,

which is exact. We set about finding a function F such that Fx(x, y) = x2 − 1/x + y/x2 and
Fy(x, y) = −1/x. From the former equation we obtain

F (x, y) =

∫ (
x2 − 1

x
+

y

x2

)
dx =

1

3
x3 − ln |x| − y

x
+ g(y),

and from the latter equation comes

−1

x
= Fy(x, y) = −1

x
+ g′(y),

or g′(y) = 0. Thus g(y) = ĉ for some constant ĉ, and we have

F (x, y) =
1

3
x3 − ln |x| − y

x
+ ĉ.

The implicit solution to the ODE is therefore F (x, y) = c for arbitrary constant c; that is

1

3
x3 − ln |x| − y

x
= c,

where ĉ becomes absorbed by the arbitrary constant term. Alternate presentations for the
solution are x4 − 3x ln |x| − 3y = cx and y = 1

3
x4 − x ln |x|+ cx. �

2. Multiply the ODE by xmyn to get

(xmyn+2 + xm+1yn+1)− xm+2yny′ = 0.

For exactness we need My = Nx, or

(n+ 2)xmyn+1 + (n+ 1)xm+1yn = −(m+ 2)xm+1yn.

Matching coefficients of like terms, we find that we must have n+ 2 = 0 and n+ 1 = −(m+ 2),
which solves to give m = −1 and n = −2. Thus an integrating factor is µ(x, y) = x−1y−2, and
the ODE becomes (1/x+ 1/y)− (x/y2)y′ = 0, which is exact. We now find a function F such
that Fx(x, y) = 1/x+ 1/y and Fy(x, y) = −x/y2. From the former equation we obtain

F (x, y) =

∫ (
1

x
+

1

y

)
dx = ln |x|+ x

y
+ g(y),

and from the latter equation comes

− x

y2
= Fy(x, y) = − x

y2
+ g′(y),
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or g′(y) = 0. Thus g(y) = ĉ for some constant ĉ, and we have F (x, y) = ln |x| + x/y + ĉ. The
implicit solution to the ODE is therefore ln |x| + x/y + ĉ = c for arbitrary constant, which we
may write simply as ln |x|+x/y = c by merging constant terms. Another solution is y ≡ 0. �

3. First suppose that y > 0. Then

y′ =
y

x
+

√
x2 + y2

y
=
y

x
+

√
x2 + y2√
y2

=
y

x
+

√(y
x

)−2
+ 1.

Letting v = y/x, the equation becomes v + xv′ = v +
√
v−2 + 1, which is separable and so

becomes ∫
1√

v−2 + 1
dv =

∫
1

x
dx (1)

Now, if x > 0, then v > 0 also, in which case

v
√
v−2 + 1 =

√
v2
√
v−2 + 1 =

√
v2 + 1,

and so, making the substitution u = v2 + 1 along the way, we get∫
1√

v−2 + 1
dv =

∫
v

v
√
v−2 + 1

dv =

∫
v√
v2 + 1

dv =

∫
1/2√
u
du

=
√
u+ c =

√
v2 + 1 + c =

√
y2/x2 + 1 + c.

Putting this into (1) gives us the solution√
y2

x2
+ 1 = ln |x|+ c. (2)

If x < 0, then v < 0 also, in which case

v
√
v−2 + 1 = −

√
v2
√
v−2 + 1 = −

√
v2 + 1.

Performing the same manipulations as before (only with a negative sign attached) results in
the solution

−
√
y2

x2
+ 1 = ln |x|+ c. (3)

Now, if we suppose that y < 0, much the same analysis is performed, again broken into the two
cases x > 0 and x < 0. If x > 0, the solution (3) results, and if x < 0, the solution (2) results.
If sgn(x) and sgn(y) denote the sign of x and y, respectively, then the general solution can be
written as

sgn(x) sgn(y)
√
y2/x2 + 1 = ln |x|+ c.

�

4. The Bernoulli equation has n = 3, P (x) = −1, and Q(x) = e2x. Let v = y−2, so that the
equation becomes v′ + 2v = −2e2x as indicated by the formula in the notes (and book). This
is a linear equation with P (x) = 2 and Q(x) = −2e2x, so an integrating factor is

µ(x) = e
∫
2 dx = e2x.



3

Multiplying v′+2v = −2e2x by e2x gives v′e2x+2ve2x = −2e4x, which becomes (ve2x)′ = −2e4x,
and so by integration we obtain

ve2x =

∫
−2e4x dx = −1

2
e4x + c.

Hence v = −1
2
e2x + ce−2x, so that y−2 = −1

2
e2x + ce−2x. That is, the general solution to the

ODE is

y2 =
2

ce−2x − e2x
.

Another solution happens to be y ≡ 0. �

5. Let x(t) be the number of gallons of Cl in the pool at time t, so x(0) = 1 (0.01% of 10,000).
Now, 5 gallons of solution that is 0.001% Cl by volume is coming in per minute, which is to
say that 0.00005 gallons of Cl is entering per minute. Meanwhile there are x(t)/10, 000 gallons
of Cl per gallon of solution in the pool, and this solution is being pumped out at a rate of 5
gallons per minute. Thus, 5x(t)/10, 000 gallons of Cl is leaving per minute. We have

x′(t) = 0.00005− 5x(t)

10, 000
=

0.1− x
2000

This equation is separable, and so becomes∫
2000

0.1− x
dx =

∫
dt,

and hence −2000 ln |x− 0.1| = t+ c. Solving for x gives x(t) = 0.1 +Ke−t/2000, and using the
initial condition x(0) = 1 we find that K = 0.9. So finally we have x(t) = 0.1 + 0.9e−t/2000.

The amount of Cl in the pool after 60 minutes (1 hour) is x(60) = 0.1+0.9e−60/2000 = 0.973
gallons, which means the pool is 0.00973% Cl.

We now find the time t when the pool is 0.002% Cl, or in other words x(t) = 0.2 gallons
Cl. The equation is 0.2 = 0.1 + 0.9e−t/2000, which solves to give t = 4394.4 minutes, or 73.24
hours. �

6. Auxiliary equation is r2 − 4r − 5 = 0, so r = −1, 5 and the general solution is y(t) =
c1e
−t + c2e

5t. Using the initial conditions y(−1) = 3 and y′(−1) = 9, we find that c1 = e−1 and
c2 = 2e5. Thus the solution to the IVP is y(t) = e−t−1 + 2e5t+5, or

y(t) = e−(t+1) + 2e5(t+1)

will also do. �

7. Auxiliary equation is r3 − 6r2 − r+ 6 = 0, which factors as (r− 6)(r2 − 1) = 0 and finally
(r − 6)(r − 1)(r + 1) = 0. Thus r = 6, 1,−1, and the general solution is

y(t) = c1e
6t + c2e

t + c3e
−t,

a three-parameter family of functions. �
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8. Auxiliary equation is r2 − 2r + 26 = 0, which has roots r = 1 ± 5i. So α = 1 and β = 5,
and the general solution is therefore y(t) = et(c1 cos 5t+ c2 sin 5t). �


