MATH 250 EXAM #1 KEY (SPRING 2012)

1a. If the function x(t) gives position x at time t, then x'(t) gives velocity at time t. Then $x'(t) = kx^2(t)$, or more simply $x' = kx^2$, is the equation, where k is some constant of proportionality.

1b. The function A(t) gives the mass A of salt at time t, and so

$$A'(t) = \frac{k}{\sqrt{A(t)}}$$

is the appropriate ODE.

2. Substitution gives $(ce^{3x}+1)'-3(ce^{3x}+1)=-3 \Rightarrow 3ce^{3x}-3ce^{3x}-3=3 \Rightarrow -3=-3$, which confirms that $\varphi(x)=ce^{3x}+1$ is a solution for any $c\in\mathbb{R}$.

3. Substitute $\varphi(x)$ for y to get

$$x^{2}\varphi''(x) - x\varphi'(x) - 5\varphi(x) = 0.$$

Since $\varphi(x) = x^m$ we have $\varphi'(x) = mx^{m-1}$ and $\varphi''(x) = m(m-1)x^{m-2}$, so that the equation becomes

$$x^{2} \cdot m(m-1)x^{m-2} - x \cdot mx^{m-1} - 5x^{m} = 0,$$

and hence

$$m(m-1)x^m - mx^m - 5x^m = 0.$$

Factoring out x^m then yields $[m(m-1)-m-5]x^m$, or simply $(m^2-2m-5)x^m=0$. This will be satisfied on an interval I for x only if $m^2-2m-5=0$, which by the quadratic formula gives $m=1\pm\sqrt{6}$.

4. The solution curves corresponding to the initial conditions v(0) = 0, v(0) = 2, and v(0) = 4 are below. It can be seen that $v(t) \to 2$ as $t \to \infty$.

5. We are given $(x_0, y_0) = (1, 0)$ and h = 0.1.

\overline{n}	0	1	2	3	4	5
x_n	1.0	1.1	1.2	1.3	1.4	1.5
y_n	0.0000	0.1000	0.2090	0.3246	0.4441	0.5644

6. This is a separable equation. From $\int e^{2y} dy = \int 8x^3 dx$ we obtain $\frac{1}{2}e^{2y} = 2x^4 + c$. Substituting x = 1 and y = 0 (the initial condition) gives $\frac{1}{2} = 2 + c$, or $c = -\frac{3}{2}$. Thus the (implicit) solution to the IVP is $\frac{1}{2}e^{2y} = 2x^4 - \frac{3}{2}$, or $e^{2y} = 4x^4 - 3$. The explicit solution may be written $y(x) = \ln \sqrt{4x^4 - 3}$.

7. The equation may be written as $y' + \frac{3}{x}y = \frac{\sin x}{x^2} - 3x$, which is the standard form for a 1st-order linear ODE. An integrating factor is

$$\mu(x) = e^{\int 3/x \, dx} = e^{3 \ln x} = x^3.$$

Multiplying the ODE by x^3 gives $x^3y' + 3x^2y = x \sin x - 3x^4$, which becomes $(x^3y)' = x \sin x - 3x^4$ and thus

$$x^{3}y = \int x \sin x \, dx - \frac{3}{5}x^{5} + c.$$

Integration by parts gives

$$\int x \sin x \, dx = \sin x - x \cos x,$$

so that $x^3y = \sin x - x\cos x - \frac{3}{5}x^5 + c$ and therefore

$$y(x) = \frac{1}{x^3} \left(\sin x - x \cos x - \frac{3}{5} x^5 + c \right).$$

is the general solution.

8. The equation may be written as

$$x' + \frac{3}{t}x = t^2 \ln t + \frac{1}{t^2},$$

which is the standard form for a 1st-order linear ODE. An integrating factor is

$$\mu(x) = e^{\int 3/t \, dt} = t^3.$$

Multiplying the ODE by t^3 gives $t^3x' + 3t^2x = t^5 \ln t + t$, which becomes $(t^3x)' = t^5 \ln t + t$ and thus

$$t^3x = \int t^5 \ln t \, dt + \frac{1}{2}t^2 + c.$$

By integration by parts we find that

$$\int t^5 \ln t \, dt = \frac{1}{6} t^6 \ln t - \int \frac{1}{6} t^5 \, dt = \frac{t^6}{6} \ln t - \frac{t^6}{36},$$

and so we have

$$t^3x = \frac{t^6}{6}\ln t - \frac{t^6}{36} + \frac{1}{2}t^2 + c.$$

Letting t=1 and x=0 (the initial condition) gives $0=-\frac{1}{36}+\frac{1}{2}+c$, so that $c=-\frac{17}{36}$ and we obtain

$$x(t) = \frac{1}{6}t^3 \left(\ln t - \frac{1}{6}\right) + \frac{1}{2t} - \frac{17}{36t^3}$$

as the solution to the IVP.

9. The equation is given to be exact, with

$$M(x,y) = ye^{xy} - \frac{1}{y}$$

and

$$N(x,y) = xe^{xy} + \frac{x}{y^2}.$$

We find a function F such that $F_x = M$ and $F_y = N$. Now,

$$F(x,y) = \int F_x(x,y) \, dx = \int M(x,y) \, dx = \int \left(y e^{xy} - \frac{1}{y} \right) dx = e^{xy} - \frac{x}{y} + g(y).$$

Differentiating with respect to y then yields

$$F_y(x,y) = xe^{xy} + \frac{x}{y^2} + g'(y),$$

where $F_y = N$ implies that

$$xe^{xy} + \frac{x}{y^2} + g'(y) = xe^{xy} + \frac{x}{y^2},$$

so that g'(y) = 0 and hence $g(y) = c_1$ for some arbitrary constant c_1 . This leaves us with

$$F(x,y) = e^{xy} - \frac{x}{y} + c_1.$$

The general implicit solution to the ODE is given by $F(x,y) = c_2$ for arbitrary constant c_2 , which here becomes

$$e^{xy} - \frac{x}{y} + c_1 = c_2.$$

Letting $c = c_2 - c_1$, we finally write $ye^{xy} - x = cy$.