1 Model: $50 x^{\prime \prime}+200 x=0, x(0)=0, x^{\prime}(0)=-10$. Here $x(t)<0$ is the position that compresses the (vertically hanging) spring. From the ODE comes

$$
x(t)=c_{1} \cos 2 t+c_{2} \sin 2 t
$$

and with the initial conditions we find $x(t)=-5 \sin 2 t$. Period of motion is π seconds. Now find t such that $x^{\prime}(t)=5 \mathrm{~m} / \mathrm{s}$, or $\cos 2 t=-\frac{1}{2}$. The times are

$$
t=\frac{\pi}{3}+\pi n \quad \text { and } \quad t=\frac{2 \pi}{3}+\pi n
$$

$n \geq 0$ an integer.

2 Put $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the ODE to get

$$
\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+x \sum_{n=1}^{\infty} n c_{n} x^{n-1}+2 \sum_{n=0}^{\infty} c_{n} x^{n}=0
$$

so

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) c_{n+2}+n c_{n}+2 c_{n}\right] x^{n}=0
$$

and hence $(n+2)(n+1) c_{n+2}+n c_{n}+2 c_{n}=0$ for all $n \geq 0$. Solve for c_{n+2} :

$$
c_{n+2}=-\frac{c_{n}}{n+1}, \quad n \geq 0
$$

We use this recurrence relation to find

$$
c_{2}=-c_{0}, \quad c_{4}=\frac{c_{0}}{1 \cdot 3}, \quad c_{6}=-\frac{c_{0}}{1 \cdot 3 \cdot 5}, \quad c_{8}=\frac{c_{0}}{1 \cdot 3 \cdot 5 \cdot 7}, \ldots
$$

and generally

$$
c_{2 n}=\frac{(-1)^{n} c_{0}}{(1)(3)(5) \cdots(2 n-1)}, \quad n \geq 1
$$

Also we find

$$
c_{3}=-\frac{c_{1}}{2}, \quad c_{5}=\frac{c_{1}}{2 \cdot 4}, \quad c_{7}=-\frac{c_{1}}{2 \cdot 4 \cdot 6}, \cdots
$$

and generally

$$
c_{2 n+1}=\frac{(-1)^{n} c_{1}}{(2)(4)(6) \cdots(2 n)}, \quad n \geq 1
$$

Since c_{0} and c_{1} are left arbitrary, setting $c_{0}=0$ and $c_{1}=1$ results in $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ becoming

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{2 n+1} x^{2 n+1}=x+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2)(4)(6) \cdots(2 n)} x^{2 n+1} .
$$

Letting $c_{0}=1$ and $c_{1}=0$ gives

$$
y_{2}(x)=\sum_{n=0}^{\infty} c_{2 n} x^{2 n}=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(1)(3)(5) \cdots(2 n-1)} x^{2 n}
$$

The general solution (not asked for here) is $y=d_{1} y_{1}+d_{2} y_{2}$ for arbitrary d_{1}, d_{2}.

3 Laplace transform of ODE is $(s Y+3)+3 Y=2 / s$, so that

$$
Y(s)=\frac{2-3 s}{s(s+3)}=\frac{2 / 3}{s}-\frac{11 / 3}{s+3}
$$

and then

$$
y(t)=\mathcal{L}^{-1}[Y]=\frac{2}{3}-\frac{11}{3} e^{-3 t}
$$

4 Going through the usual grind,

$$
y(t)=5 t e^{t}+\frac{1}{2} t^{2} e^{t}
$$

