MATH 250 ExaM #4 Key (FALL 2021)

1 Model: 502" + 200z = 0, z(0) = 0, 2/(0) = —10. Here z(t) < 0 is the position that
compresses the (vertically hanging) spring. From the ODE comes

x(t) = ¢y cos 2t + o sin 2t,

and with the initial conditions we find z(t) = —5sin2t. Period of motion is 7 seconds. Now
find ¢ such that 2/(t) = 5 m/s, or cos 2t = —5. The times are
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n > 0 an integer.

2 Puty=>3 7, c,a2" into the ODE to get
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and hence (n + 2)(n + 1)cpy0 + nc, + 2¢, = 0 for all n > 0. Solve for ¢, 9:
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We use this recurrence relation to find
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Since ¢ and ¢; are left arbitrary, setting ¢p = 0 and ¢; = 1 results in y = )~ ¢,2™ becoming
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Letting ¢y = 1 and ¢; = 0 gives
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Yo(x) = Zcznx =1+ Z (2n — 1)x2”.
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The general solution (not asked for here) is y = dyy; + days for arbitrary dy, ds.



3 Laplace transform of ODE is (sY 4 3) + 3Y = 2/s, so that
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and then

4 Going through the usual grind,

1
y(t) = 5te’ + §t2€t.



