Math 250 Exam \#3 Key (Fall 2021)

1 The complementary solution to the ODE is $y_{c}=c_{1}+c_{2} e^{-x}$. Now we solve $y^{\prime \prime}+y^{\prime}=x$. A particular solution has the form $A x^{2}+B x$, and the Method of Undetermined Coefficients reveals that $A=\frac{1}{2}$ and $B=-1$. Thus we get $y_{p_{1}}=\frac{1}{2} x^{2}-x$.

Next solve $y^{\prime \prime}+y^{\prime}=\sin 2 x$. A particular solution has the form $A \cos 2 x+B \sin 2 x$, and once it's found that $A=-\frac{1}{10}$ and $B=-\frac{1}{5}$, we get $y_{p_{2}}=-\frac{1}{10} \cos 2 x-\frac{1}{5} \sin 2 x$.

By the Superposition Principle the general solution to $y^{\prime \prime}+y^{\prime}=x+\sin 2 x$ is

$$
y=y_{c}+y_{p_{1}}+y_{p_{2}}=c_{1}+c_{2} e^{-x}+\frac{1}{2} x^{2}-x-\frac{1}{10} \cos 2 x-\frac{1}{5} \sin 2 x
$$

2 Auxiliary equation $r^{2}+1=0$ has roots $r= \pm i$, so complementary solution is $y_{c}=$ $c_{1} \cos x+c_{2} \sin x$. From this we obtain two linearly independent solutions to the ODE: $y_{1}=\cos x$ and $y_{2}=\sin x$. The Wronskian is $W\left[y_{1}, y_{2}\right](x) \equiv 1$. We now find

$$
u_{1}(x)=-\int \sin x \sec ^{3} x d x=-\frac{1}{2} \sec ^{2} x \quad \text { and } \quad u_{2}(x)=\int \cos x \sec ^{3} x d x=\tan x
$$

so a particular solution is

$$
y_{p}=u_{1}(x) y_{1}+u_{2}(x) y_{2}=-\frac{1}{2} \sec x+\sin ^{2} x \sec x=\frac{1}{2} \sec x-\cos x
$$

General solution is

$$
y=y_{c}+y_{p}=c_{1} \cos x+c_{2} \sin x+\frac{1}{2} \sec x-\cos x
$$

(Note: different outcomes for $u_{1}(x)$ are possible depending on what constant term is added. We could write, say, $u_{1}(x)=-\frac{1}{2} \sec ^{2} x+\frac{1}{2}=-\frac{1}{2} \tan ^{2} x$.)

3 Apply, say, $D+1$ to the 2 nd equation in the system and multiply the 1st equation by 3 to get

$$
\left\{\begin{array}{l}
3(D+1) x+\quad 3(D-1) y=6 \\
3(D+1) x+(D+1)(D+2) y=-1
\end{array}\right.
$$

Subtract to get

$$
3(D-1) y-(D+1)(D+2) y=7 \quad \hookrightarrow \quad y^{\prime \prime}+5 y=-7 .
$$

The auxiliary equation $r^{2}+5=0$ has roots $r= \pm i \sqrt{5}$, so the complementary solution is

$$
y_{c}=c_{1} \cos \sqrt{5} t+c_{2} \sin \sqrt{5} t
$$

Almost by inspection we have $y_{p}=-\frac{7}{5}$ as a particular solution to $y^{\prime \prime}+5 y=-7$. General solution:

$$
\begin{equation*}
y=c_{1} \cos \sqrt{5} t+c_{2} \sin \sqrt{5} t-\frac{7}{5} . \tag{1}
\end{equation*}
$$

Next apply $D+2$ and $D-1$ for the 1 st and 2 nd equation in the system, respectively, giving

$$
\left\{\begin{aligned}
(D+2)(D+1) x+(D+2)(D-1) y & =4 \\
3(D-1) x+(D-1)(D+2) y & =1
\end{aligned}\right.
$$

Subtract to get

$$
(D+2)(D+1) x-3(D-1) x=3 \quad \hookrightarrow \quad\left(D^{2}+5\right) x=3 \quad \hookrightarrow \quad x^{\prime \prime}+5 x=3
$$

By similar means as before, we get the general solution

$$
\begin{equation*}
x=c_{3} \cos \sqrt{5} t+c_{4} \sin \sqrt{5} t+\frac{3}{5} . \tag{2}
\end{equation*}
$$

Now put (1) and (2) into, say, the 2 nd equation in the original system to get, after some rearrangement of terms,

$$
\left(3 c_{3}+\sqrt{5} c_{2}+2 c_{1}\right) \cos \sqrt{5} t+\left(3 c_{4}+2 c_{2}-\sqrt{5} c_{1}\right) \sin \sqrt{5} t=0
$$

Hence $c_{3}=-\frac{2}{3} c_{1}-\frac{\sqrt{5}}{3} c_{2}$ and $c_{4}=\frac{\sqrt{5}}{3} c_{1}-\frac{2}{3} c_{2}$. The general solution to the system is:

$$
\begin{aligned}
& x(t)=\left(-\frac{2}{3} c_{1}-\frac{\sqrt{5}}{3} c_{2}\right) \cos \sqrt{5} t+\left(\frac{\sqrt{5}}{3} c_{1}-\frac{2}{3} c_{2}\right) \sin \sqrt{5} t+\frac{3}{5}, \\
& y(t)=c_{1} \cos \sqrt{5} t+c_{2} \sin \sqrt{5} t-\frac{7}{5} .
\end{aligned}
$$

4 Let $u=y^{\prime}$, so $u^{\prime}=y^{\prime \prime}$ and the ODE becomes $x^{2} u^{\prime}+u^{2}=0$, which is separable:

$$
-\int \frac{1}{u^{2}} d u=\int \frac{1}{x^{2}} d x \quad \hookrightarrow \quad \frac{1}{u}=-\frac{1}{x}+c_{1}=\frac{c_{1} x-1}{x} \quad \hookrightarrow \quad \frac{d y}{d x}=\frac{x}{c_{1} x-1} .
$$

If $c_{1}=0$ we get

$$
\frac{d y}{d x}=-x \quad \hookrightarrow \quad \int d y=-\int x d x \quad \hookrightarrow \quad \boldsymbol{y}=-\frac{\boldsymbol{x}^{2}}{\mathbf{2}}+\boldsymbol{c}
$$

a one-parameter family of solutions to the original ODE. If $c_{1} \neq 0$ we get

$$
\frac{d y}{d x}=\frac{x}{c_{1} x-1}=\frac{1}{c_{1}}+\frac{1 / c_{1}}{c_{1} x-1} \quad \hookrightarrow \quad \int d y=\int\left(\frac{1}{c_{1}}+\frac{1 / c_{1}}{c_{1} x-1}\right) d x
$$

which leads to a two-parameter family of solutions:

$$
y=\frac{x}{c_{1}}+\frac{\ln \left|c_{1} x-1\right|}{c_{1}^{2}}+c_{2}
$$

This family does not include the members of the one-parameter family above.

5 In general we have

$$
y=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{y(4)(0)}{4!} x^{4}+\cdots .
$$

Now,

$$
y^{\prime \prime}=4 x+2 y^{2} \Rightarrow y^{\prime \prime}(0)=2 y^{2}(0)=2(-1)^{2}=2
$$

and

$$
y^{\prime \prime \prime}=4+4 y y^{\prime} \Rightarrow y^{\prime \prime \prime}(0)=4+4 y(0) y^{\prime}(0)=4+4(-1)(2)=-4,
$$

Therefore

$$
y(x) \approx-1+2 x+x^{2}-\frac{2}{3} x^{3}
$$

