Math 250 Exam \#2 Key (Fall 2021)

1 Write the DE as

$$
y^{\prime}=-\frac{1+(y / x)^{2}}{2(y / x)}
$$

then let $u=y / x$ so that $y=x u$ and $y^{\prime}=u+x u^{\prime}$, and the DE becomes

$$
u+x u^{\prime}=-\frac{1+u^{2}}{2 u}
$$

The equation is separable, giving

$$
-\int \frac{2 u}{1+3 u^{2}} d u=\int \frac{1}{x} d x \Rightarrow-\frac{1}{3} \ln \left|3 u^{2}+1\right|=\ln |x|+c \Rightarrow \ln \left(\frac{3 y^{2}}{x^{2}}+1\right)=\ln |x|^{-3}+c
$$

(Note the elimination of absolute values around the expression that cannot be negative.) From this comes

$$
\frac{3 y^{2}}{x^{2}}+1=\hat{c}|x|^{-3}= \pm \hat{c} x^{-3}, \quad \hat{c}>0
$$

and then

$$
\frac{3 y^{2}}{x^{2}}+1=c_{0} x^{-3}, \quad c_{0} \neq 0
$$

The solution may also be written as $x\left(3 y^{2}+x^{2}\right)=c_{0}$, which makes clear that in this case we cannot allow $c_{0}=0$, for then we would require $3 y^{2}+x^{2}=0$ for x on some interval of real numbers, which is impossible!

2 Let $u=2 x+y+1$, so that $y^{\prime}=u^{\prime}-2$ and the DE becomes $u\left(u^{\prime}-2\right)=1$. This is separable, giving

$$
\int \frac{u}{2 u+1} d u=\int d x \Rightarrow \frac{u}{2}-\frac{\ln |2 u+1|}{4}=x+c
$$

Since $u=2 x+y+1$, we next obtain

$$
\frac{2 x+y+1}{2}-\frac{\ln |4 x+2 y+3|}{4}=x+c \Rightarrow 2 y+2-\ln |4 x+2 y+3|=c
$$

The constant term 2 can be absorbed by c, so that

$$
2 y-\ln |4 x+2 y+3|=c \Rightarrow 4 x+2 y+3=c_{0} e^{2 y}, \quad c_{0} \neq 0
$$

If we let $c_{0}=0$ we obtain $y=-2 x-\frac{3}{2}$, which by direct substitution is found to satisfy the original DE. Thus we write the solution as

$$
4 x+2 y+3=c e^{2 y}
$$

where $c \in(-\infty, \infty)$ as before.

3 Newton's Law of Cooling states that $T^{\prime}(t)=k\left[T(t)-T_{a}\right]$. Here we have $T_{a}=-5, T(1)=10$, and $T(4)=0$. Now, noting that $T(t)>-5$ for all $t \geq 0$,

$$
T^{\prime}=k(T+5) \Rightarrow \int \frac{1}{T+5} d T=\int k d t \Rightarrow \ln |T+5|=k t+c \Rightarrow T+5=e^{k t+c}
$$

and so

$$
T(t)=-5+C e^{k t}
$$

From $T(1)=10$ we obtain

$$
10=-5+C e^{k} \Rightarrow C e^{k}=15 \Rightarrow C=15 e^{-k}
$$

and so

$$
T(t)=-5+15 e^{-k} e^{k t}=-5+15 e^{k(t-1)}
$$

From $T(4)=0$ we obtain

$$
0=-5+15 e^{3 k} \Rightarrow e^{3 k}=\frac{1}{3} \Rightarrow 3 k=\ln \left(\frac{1}{3}\right) \Rightarrow k=\frac{1}{3} \ln \left(\frac{1}{3}\right) \approx-0.366
$$

Thus

$$
T(t)=-5+15 e^{\frac{t-1}{3} \ln \frac{1}{3}}=-5+15\left(\frac{1}{3}\right)^{(t-1) / 3}=-5+15 \sqrt[3]{\frac{1}{3^{t-1}}}
$$

The temperature in the kitchen is

$$
T(0)=-5+15 \sqrt[3]{3} \approx 62^{\circ} \mathrm{C}
$$

4 Let $x(t)$ be the mass of salt, in kilograms, in the tank at time t, so that $x(0)=30$. The volume of solution in the tank is $V(t)=200+2 t$. The full derivation of $x^{\prime}(t)$, which is the rate of change of the amount of salt in the tank at time t, is as follows:

$$
\begin{aligned}
x^{\prime}(t) & =(\text { rate salt enters Tank } 1)-(\text { rate salt leaves Tank } 1) \\
& =\left(\frac{0.3 \mathrm{~kg}}{1 \mathrm{~L}}\right)\left(\frac{4 \mathrm{~L}}{1 \min }\right)-\left(\frac{x(t) \mathrm{kg}}{V(t) \mathrm{L}}\right)\left(\frac{2 \mathrm{~L}}{1 \min }\right) \\
& =1.2-\frac{2 x(t)}{200+2 t}
\end{aligned}
$$

Thus we have a linear first-order ODE:

$$
x^{\prime}+\frac{x}{t+100}=\frac{6}{5} .
$$

To solve this equation, we multiply by the integrating factor

$$
\mu(t)=\exp \left(\int \frac{1}{t+100} d t\right)=e^{\ln (t+100)}=t+100
$$

to obtain

$$
(t+100) x^{\prime}+x=\frac{6}{5}(t+100)
$$

which becomes

$$
[(t+100) x]^{\prime}=\frac{6}{5}(t+100)
$$

and thus

$$
(t+100) x=\frac{6}{5} \int(t+100) d t=\frac{3}{5} t^{2}+120 t+c
$$

From this we get a general explicit solution to the ODE,

$$
x(t)=\frac{3 t^{2}+600 t+c}{5 t+500}
$$

To determine c we use the initial condition $x(0)=30$, giving $c / 500=30$, and thus $c=15,000$. So, the amount of salt in the tank at time t is given by

$$
x(t)=\frac{3 t^{2}+600 t+15,000}{5 t+500}
$$

The tank is full when $t=150$ minutes. At that time the concentration of salt is:

$$
\frac{x(150)}{V(150)}=\frac{1}{500}\left[\frac{3(150)^{2}+600(150)+15,000}{5(150)+500}\right]=\frac{138}{500}=0.276 \mathrm{~kg} / \mathrm{L}
$$

5 Write the equation in the form

$$
y^{\prime \prime}-\frac{2 x}{1-x^{2}} y^{\prime}+\frac{2}{1-x^{2}}=0
$$

so $P(x)=-2 x /\left(1-x^{2}\right)$. Now,

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}(x)} d x=x \int\left(\frac{1}{x^{2}} \exp \left(\int \frac{2 x}{1-x^{2}} d x\right)\right) d x \tag{1}
\end{equation*}
$$

where

$$
\int \frac{2 x}{1-x^{2}} d x=-\ln \left|1-x^{2}\right|+c=-\ln \left(1-x^{2}\right)+c
$$

the absolute values disappearing since we assume $x \in(-1,1)$. Putting this into (1) with $c=0$ results in

$$
\begin{aligned}
y_{2}(x) & =x \int \frac{1}{x^{2}\left(1-x^{2}\right)} d x=x \int\left(\frac{1}{x^{2}}+\frac{1 / 2}{1-x}+\frac{1 / 2}{1+x}\right) d x \\
& =x\left(-\frac{1}{x}-\frac{1}{2} \ln (1-x)+\frac{1}{2} \ln (1+x)+c x\right)
\end{aligned}
$$

for $-1<x<1$. Letting $c=0$ again, we get

$$
y_{2}(x)=\frac{x}{2} \ln \left(\frac{1+x}{1-x}\right)-1 .
$$

6 With auxiliary equation $6 r^{2}-11 r+4=0$, which has roots $r=\frac{4}{3}, \frac{1}{2}$, we get

$$
y=c_{1} e^{4 x / 3}+c_{2} e^{x / 2}
$$

as the general solution to the DE. For the IVP the particular solution is

$$
y=-3 e^{4 x / 3}+4 e^{x / 2}
$$

7 With a bit of trial-and-error we find the auxiliary equation $3 r^{3}+5 r^{2}+r-1=0$ has root $r=-1$, and so factors as

$$
(r+1)\left(3 r^{2}+2 r-1\right)=0 \Rightarrow(r+1)^{2}(3 r-1)=0
$$

Thus $\frac{1}{3}$ is another root and -1 is a double root. General solution:

$$
y=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} e^{x / 3}
$$

