Math 250 Exam \#3 Key (Fall 2020)

1 Let $u=\frac{d y}{d x}$, so that $u^{\prime}=\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}=u \frac{d u}{d y}$. The differential equation (DE) becomes a first-order separable equation:

$$
y \cdot u \frac{d u}{d y}+u^{2}-u=0 \Rightarrow \frac{d u}{d y}=\frac{u-u^{2}}{y u} \Rightarrow \int \frac{1}{1-u} d u=\int \frac{1}{y} d y
$$

and so for any $c_{0} \in \mathbb{R}$ we have

$$
\ln |1-u|=-\ln |y|+c_{0} \Rightarrow|1-u|=e^{c_{0}} e^{-\ln |y|}=\frac{e^{c_{0}}}{|y|} \Rightarrow|y(1-u)|=e^{c_{0}}
$$

and so $y(1-u)= \pm e^{c_{0}}$. Letting $c_{1}= \pm e^{c_{0}}$, so that $c_{1} \neq 0$, we get

$$
y(1-u)=c_{1} \Rightarrow \frac{d y}{d x}=u=1-\frac{c_{1}}{y} .
$$

This again is separable, yielding

$$
\int \frac{y}{y-c_{1}} d y=\int d x \Rightarrow \int\left(1+\frac{c_{1}}{y-c_{1}}\right) d y=\int d x
$$

and hence

$$
y+c_{1} \ln \left|y-c_{1}\right|=x+c_{2}
$$

for $c_{1} \neq 0$ and $c_{2} \in \mathbb{R}$. However, if we set $c_{1}=0$ we find from this that $y=x+c_{2}$, which also satisfies the DE. Moreover we find that $y=c, c$ any constant, also satisfies the DE . Thus there is a two-parameter family of solutions and a one-parameter family:

$$
y+c_{1} \ln \left|y-c_{1}\right|=x+c_{2}, \quad c_{1}, c_{2} \in \mathbb{R} ; \quad y=c, \quad c \in \mathbb{R}
$$

With some algebra we can eliminate the absolute value in the two-parameter family and recast it differently as

$$
y=C_{1}+C_{2} e^{(x-y) / C_{1}}, \quad C_{1}, C_{2} \neq 0
$$

2 In general we have

$$
y=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}+\frac{y^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{y(4)(0)}{4!} x^{4}+\cdots
$$

Now,

$$
\begin{gathered}
y^{\prime \prime}=4 x+2 y^{2} \Rightarrow y^{\prime \prime}(0)=2 y^{2}(0)=2(-1)^{2}=2 \\
y^{\prime \prime \prime}=4+4 y y^{\prime} \Rightarrow y^{\prime \prime \prime}(0)=4+4 y(0) y^{\prime}(0)=4+4(-1)(2)=-4 \\
y^{(4)}=4\left(y^{\prime}\right)^{2}+4 y y^{\prime \prime} \Rightarrow y^{(4)}(0)=4(2)^{2}+4(-1)(2)=8
\end{gathered}
$$

Therefore

$$
y \approx-1+2 x+x^{2}-\frac{2}{3} x^{3}+\frac{1}{3} x^{4}
$$

3a Auxiliary equation is $r^{2}+4=0$, so that $r= \pm 2 i$ and hence the general solution to the corresponding homogeneous DE is

$$
y_{h}=c_{1} \cos 2 x+c_{2} \sin 2 x .
$$

A particular solution to the $\mathrm{DE} y^{\prime \prime}+4 y=4 \cos x+3 \sin x$ will have the form

$$
y_{p_{1}}=A \cos x+B \sin x .
$$

Putting this into the DE we find we must have $A=\frac{4}{3}$ and $B=1$. A particular solution to the DE $y^{\prime \prime}+4 y=-8$ will have the form $y_{p_{2}}=C$, and just by inspection we can see that $y_{p_{2}}=-2$ works. By the Superposition Principle, therefore,

$$
y_{p}=y_{p_{1}}+y_{p_{2}}=\frac{4}{3} \cos x+\sin x-2
$$

is a particular solution to the original DE .

3b General solution is

$$
y=\frac{4}{3} \cos x+\sin x-2+c_{1} \cos 2 x+c_{2} \sin 2 x .
$$

3c With $y(0)=0$ we get $c_{1}=\frac{2}{3}$, and with $y^{\prime}(0)=-2$ we get $c_{2}=-\frac{3}{2}$. The solution to the IVP is therefore

$$
y=\frac{4}{3} \cos x+\sin x-2+\frac{2}{3} \cos 2 x-\frac{3}{2} \sin 2 x .
$$

4 Auxiliary equation $r^{2}+2 r+1=0$ has double root $r=-1$, so $y_{1}=e^{-x}$ and $y_{2}=x e^{-x}$ form a fundamental set for the DE , and $y_{h}=c_{1} e^{-x}+c_{2} x e^{-x}$ is the general solution to the corresponding homogeneous DE. A particular solution to the original DE has form $y_{p}=u_{1}(x) e^{-x}+u_{2}(x) x e^{-x}$, and with $q(x)=e^{-x} / x$ we have

$$
u_{1}(x)=-\int \frac{y_{2}(x) q(x)}{\mathcal{W}\left[y_{1}, y_{2}\right]} d x=-\int \frac{x e^{-x} \cdot e^{-x} / x}{e^{-2 x}} d x=-\int d x=-x
$$

and

$$
u_{2}(x)=\int \frac{y_{1}(x) q(x)}{\mathcal{W}\left[y_{1}, y_{2}\right]} d x=\int \frac{1}{x} d x=\ln |x| .
$$

So $y_{p}=(\ln |x|-1) x e^{-x}$, and the general solution is

$$
y=\frac{(\ln |x|-1) x+c_{1}+c_{2} x}{e^{x}} .
$$

