1 Start with $\frac{d T}{d t}=k(T-M)$ with $T(0)=200$ and $T(1)=190$. Also $M=72$. This gives an equation that is separable:

$$
\int \frac{1}{T-72} d T=\int k d t \Rightarrow \ln |T-72|=k t+C \Rightarrow T(t)=72+C e^{k t}
$$

With the initial conditions we find $C=128$ and $k=\ln (59 / 64) \approx-0.0813$, and so

$$
T(t)=72+128 e^{-0.0813 t}
$$

Finally we find t such that $T(t)=120$, a precalculus problem which solves to give $t \approx 12.1$ minutes.

2 Let $x(t)$ be the amount of dye (in grams) in the tank at time t. Then $x(0)=200 \mathrm{~g}$. Now,

$$
\frac{d x}{d t}=-\frac{x}{100} \Rightarrow \ln x=-\frac{t}{100}+c \Rightarrow x(t)=C e^{-t / 100}
$$

with $x(0)=200$ implying that $C=200$, and so $x(t)=200 e^{-t / 100}$. Now we find t such that $x(t)=0.01 x(0)=2 \mathrm{~g}$, which solves to give $t \approx 460.5$ minutes.

3 It's a little faster using the definition instead of the Wronskian: Suppose

$$
a_{1} x+a_{2} x^{-2}+a_{3} x^{-2} \ln x=0
$$

for all $x \in(0, \infty)$. Letting x be $1, e$, and $1 / e$, say, gives the system of equations

$$
\left\{\begin{array} { r l }
{ a _ { 1 } + a _ { 2 } } & { = 0 } \\
{ e a _ { 1 } + e ^ { - 2 } a _ { 2 } + e ^ { - 2 } a _ { 3 } } & { = 0 } \\
{ e ^ { - 1 } a _ { 1 } + e ^ { 2 } a _ { 2 } - e ^ { 2 } a _ { 3 } } & { = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{rl}
a_{1}+a_{2} & =0 \\
e^{3} a_{1}+a_{2}+a_{3} & =0 \\
a_{1}+e^{3} a_{2}-e^{3} a_{3} & =0
\end{array}\right.\right.
$$

The first equation gives $a_{2}=-a_{1}$. Putting this into the other two equations in the system at right, and then adding those equations, yields $\left(1-e^{3}\right) a_{3}=0$ and hence $a_{3}=0$. From this we can quickly find that $a_{1}=0$ and $a_{2}=0$ as well, and therefore $\left\{x, x^{-2}, x^{-2} \ln x\right\}$ is a linearly independent set of functions on $(0, \infty)$. The general solution to the differential equation is

$$
y=c_{1} x+c_{2} x^{-2}+c_{3} x^{-2} \ln x
$$

for arbitrary parameters c_{1}, c_{2}, c_{3}.
The Wronskian, if computed, works out to $9 x^{-6}$, which is clearly nonzero for any $x \in(0, \infty)$, again proving the linear independence of the functions according to a theorem we've seen.

4 Get the standard form first:

$$
y^{\prime \prime}+\frac{2 x+2}{1-2 x-x^{2}} y^{\prime}-\frac{2}{1-2 x-x^{2}} y=0
$$

Now, with the supplied formula,

$$
y_{2}(x)=(x+1) \int \frac{\exp \left(-\int \frac{2 x+2}{1-2 x-x^{2}} d x\right)}{(x+1)^{2}} d x
$$

Letting $u=1-2 x-x^{2}$, so that $-d u=(2 x+2) d x$, we get

$$
\int \frac{2 x+2}{1-2 x-x^{2}} d x=-\int \frac{1}{u} d u=-\ln |u|=-\ln \left|1-2 x-x^{2}\right|
$$

Thus, at least for $x<-1-\sqrt{2}$ or $x>-1+\sqrt{2}$ (where $1-2 x-x^{2}<0$ is assured) we have

$$
\exp \left(-\int \frac{2 x+2}{1-2 x-x^{2}} d x\right)=e^{\ln \left|1-2 x-x^{2}\right|}=\left|1-2 x-x^{2}\right|=x^{2}+2 x-1,
$$

and therefore

$$
y_{2}(x)=(x+1) \int \frac{x^{2}+2 x-1}{(x+1)^{2}} d x=(x+1) \int\left(1-\frac{2}{(x+1)^{2}}\right) d x=x^{2}+x+2
$$

5a Auxiliary equation is $2 r^{2}-7 r+3=0$, which has distinct real roots $r=\frac{1}{2}, 3$. The general solution is therefore $y=c_{1} e^{x / 2}+c_{2} e^{3 x}$.

5b Auxiliary equation is $2 r^{3}-5 r^{2}+8 r-20=0$, which has roots $r=\frac{5}{2}$ and $r= \pm 2 i$ since

$$
2 r^{3}-5 r^{2}+8 r-20=r^{2}(2 r-5)+4(2 r-5)=(2 r-5)\left(r^{2}+4\right) .
$$

The general solution is therefore

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x+c_{3} e^{5 x / 2}
$$

6 Auxiliary equation is $r^{2}-2 r+1=0$, so $r=1$ is a double root, and the general solution must be $y=c_{1} e^{x}+c_{2} x e^{x}$. With $y(0)=5$ we immediately get $c_{1}=5$, then with $y^{\prime}(0)=10$ and $y^{\prime}=\left(5+c_{2}\right) e^{x}+c_{2} x e^{x}$ we get $c_{2}=5$. Solution to the IVP is therefore

$$
y=5 e^{x}+5 x e^{x} .
$$

