
Math 250 Exam #1 Key (Fall 2007)

1a. Ordinary, nonlinear, third order, x independent, y dependent.

1b. Partial, second order, r and t independent, N dependent.

2. We have
d

dx
(y − ln y) = 2x ⇒ dy

dx
− 1

y

dy

dx
= 2x ⇒ dy

dx
=

2x

1− 1/y
⇒ dy

dx
=

2xy

y − 1
, which is the

given differential equation, so yes, it is an implicit solution.

3. Substituting ϕ(x) for y, we get

x2ϕ′′(x) + 7xϕ′(x) + 5ϕ(x) = 0 ⇒ x2 ·m(m− 1)xm−2 + 7x ·mxm−1 + 5xm = 0

⇒ [m(m− 1) + 7m+ 5]xm = 0

⇒ m2 + 6m+ 5 = 0 ⇒ (m+ 1)(m+ 5) = 0,

which gives m = −5,−1. Hence the functions ϕ1(x) = x−5 and ϕ2(x) = x−1 are particular solutions to
the differential equation.

4. By separation of variables procedure we get

∫
7r

1− 5r2
dr =

∫
1

x
dx. Let u = 1 − 5r2, so by

u-substitution procedure we get du = −10r dr ⇒ − 1
10
du = r dr; now,

∫
−7/10

u
du = ln |x| + c ⇒

− 7

10
ln |u| = ln |x| + c ⇒ − 7

10
ln |1 − 5r2| = ln |x| + c ⇒ 14 ln |1 − 5r2| + 20 ln |x| = c ⇒

ln
[
x20(1− 5r2)14

]
= c, where c is an arbitrary constant. This is a family of implicitly defined functions

r(x). We can also write x20(1 − 5r2)14 = k, where k = ec is again arbitrary, but it must be remembered
that k 6= 0.

5. By separation of variables:

∫
1

2
√
y + 1

dy =

∫
sinx dx ⇒ 1

2
· 2
√
y + 1 = − cosx + c ⇒√

y + 1 + cos x = c. Now, using y(π/2) = 0 we obtain c =
√

0 + 1 + cos(π/2) = 1, so the solution is√
y + 1 + cos x = 1, or more explicitly y(x) = (1− cosx)2 − 1.

6. Write y′ − 1

x
y = 2x + 1. Let µ(x) = exp

(
−
∫

1

x
dx

)
= e− lnx = x−1, and multiply the differential

equation to get x−1y′ − x−2y = 2 + x−1, whence (x−1y)′ = 2 + x−1 ⇒ x−1y =

∫ (
2 +

1

x

)
dx ⇒ y

x
=

2x+ ln |x|+ c. Therefore the general solution is y(x) = 2x2 + x ln |x|+ cx.



7. Following procedure, divide by t3 to obtain
dx

dt
+

3

t
x =

1

t2
. Now, µ(x) = exp

(∫
3
t
dt
)

= e3 ln t = t3

is our integrating factor, which means (ironically) that we next multiply
dx

dt
+

3

t
x =

1

t2
by t3 to obtain

t3
dx

dt
+ 3t2x = t (the original equation). It may help to rewrite this as t3x′ + 3t2x = t, which becomes

(t3x)′ = t and hence t3x =

∫
t dt =

1

2
t2 + c. From x(2) = 0 comes 23 · 0 = 1

2
· 22 + c and thus c = −2. So

the solution is t3x =
1

2
t2 − 2, or more explicitly x(t) =

1

2t
− 2

t3
.

8a. The solution curve corresponding to the initial condition y(−2) = −2 is depicted in red below.

8b. The solution curve corresponding to the initial condition y(0) = 0 is depicted in blue below.

8c. For the curve given by y(−2) = −2, it’s seen that y(x) → −1− as x → ∞, and y(x) → −∞ as
x → −∞. For the curve given by y(0) = 0, it’s seen that y(x) → −1+ as x → ∞, and y(x) → 1− as
x→ −∞. (Incidentally the direction field happens to be that for the differential equation y′ = y2 − 1.)
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