- **1a.** Ordinary, 2nd-order, x independent, y dependent, nonlinear.
- **1b.** Ordinary, 4th-order, w independent, z dependent, linear.
- 2. Substitute $\varphi(x) = x^m$ for y in the differential equation to obtain:

$$3x^{2}\varphi''(x) + 11x\varphi'(x) - 3\varphi(x) = 0 \Rightarrow$$

$$3m(m-1)x^{2}x^{m-2} + 11mxx^{m-1} - 3x^{m} = 0 \Rightarrow$$

$$(3m^{2} - 3m)x^{m} + 11mx^{m} - 3x^{m} = 0 \Rightarrow$$

$$(3m^{2} + 8m - 3)x^{m} = 0 \Rightarrow$$

$$(3m - 1)(m + 3)x^{m} = 0.$$

The last equation is satisfied for all $x \in \mathbb{R}$ if m = 1/3 or m = -3. Thus $\varphi(x) = x^{1/3}$ and $\varphi(x) = x^{-3}$ are both solutions to the original differential equation.

3. Substitution into $y'' + 4y = 5e^{-x}$ yields

$$(6\cos 2x - e^{-x})' + 4(3\sin 2x + e^{-x}) = 5e^{-x} \implies -12\sin 2x + e^{-x} + 12\sin 2x + 4e^{-x} = 5e^{-x} \implies 5e^{-x} = 5e^{-x}.$$

Since we have obtained an identity, it follows that $y = 3 \sin 2x + e^{-x}$ is indeed a solution to the differential equation.

4. We are given $(x_0, y_0) = (1, 0)$ and h = 0.1.

n	0	1	2	3	4
x_n	1.0	1.1	1.2	1.3	1.4
y_n	0.0000	0.1000	0.2090	0.3246	0.4441

5. From $x' = 3xt^2$ we obtain, by separation of variables, $\int \frac{1}{3x} dx = \int t^2 dt \Rightarrow \frac{1}{3} \int \frac{1}{x} dx = \int t^2 dt \Rightarrow \frac{1}{3} \ln |x| = \frac{1}{3}t^2 + c \Rightarrow \ln |x| = t^3 + c \Rightarrow e^{\ln |x|} = e^{t^3 + c} \Rightarrow |x| = be^{t^3}$, where $b = e^c > 0$ is arbitrary. Now, $x(t) = \pm be^{t^3}$, where $a = \pm b \neq 0$ is arbitrary. Observing that $x \equiv 0$ is also a solution to the original differential equation, we may permit a = 0 so that the solution is $x(t) = ce^{t^3}$ for c any arbitrary real number.

6. From $y' = 2x \cos^2 y$ we get $\frac{1}{\cos^2 y} y' = 2x$, and so by separation of variables comes $\int \sec^2 y \, dy = \int 2x \, dx$. Integrating gives $\int \tan y \, dy = x^2 + c$, where $c \in \mathbb{R}$ is arbitrary. From the initial condition it's seen that $y = \pi/4$ when x = 0, so $\tan \pi/4 = 0^2 + c \Rightarrow c = 1$. Therefore the solution to the initial value problem is $\tan y = x^2 + 1$, or more explicitly $y = \arctan(x^2 + 1)$. Note: the explicit solution is a curve for which $y \in (-\pi/2, \pi/2)$ for all $x \in (-\infty, \infty)$, which does indeed pass through the initial point $(0, \pi/4)$.