1a. Ordinary, 2nd-order, x independent, y dependent, nonlinear.

1b. Ordinary, 4th-order, w independent, z dependent, linear.
2. Substitute $\varphi(x)=x^{m}$ for y in the differential equation to obtain:

$$
\begin{aligned}
3 x^{2} \varphi^{\prime \prime}(x)+11 x \varphi^{\prime}(x)-3 \varphi(x)=0 & \Rightarrow \\
3 m(m-1) x^{2} x^{m-2}+11 m x x^{m-1}-3 x^{m}=0 & \Rightarrow \\
\left(3 m^{2}-3 m\right) x^{m}+11 m x^{m}-3 x^{m}=0 & \Rightarrow \\
\left(3 m^{2}+8 m-3\right) x^{m}=0 & \Rightarrow \\
(3 m-1)(m+3) x^{m}=0 &
\end{aligned}
$$

The last equation is satisfied for all $x \in \mathbb{R}$ if $m=1 / 3$ or $m=-3$. Thus $\varphi(x)=x^{1 / 3}$ and $\varphi(x)=x^{-3}$ are both solutions to the original differential equation.
3. Substitution into $y^{\prime \prime}+4 y=5 e^{-x}$ yields

$$
\begin{aligned}
\left(6 \cos 2 x-e^{-x}\right)^{\prime}+4\left(3 \sin 2 x+e^{-x}\right) & =5 e^{-x} \Rightarrow \\
-12 \sin 2 x+e^{-x}+12 \sin 2 x+4 e^{-x} & =5 e^{-x} \Rightarrow \\
5 e^{-x} & =5 e^{-x}
\end{aligned}
$$

Since we have obtained an identity, it follows that $y=3 \sin 2 x+e^{-x}$ is indeed a solution to the differential equation.
4. We are given $\left(x_{0}, y_{0}\right)=(1,0)$ and $h=0.1$.

n	0	1	2	3	4
x_{n}	1.0	1.1	1.2	1.3	1.4
y_{n}	0.0000	0.1000	0.2090	0.3246	0.4441

5. From $x^{\prime}=3 x t^{2}$ we obtain, by separation of variables, $\int \frac{1}{3 x} d x=\int t^{2} d t \Rightarrow \frac{1}{3} \int \frac{1}{x} d x=\int t^{2} d t \quad \Rightarrow$ $\frac{1}{3} \ln |x|=\frac{1}{3} t^{2}+c \Rightarrow \ln |x|=t^{3}+c \Rightarrow e^{\ln |x|}=e^{t^{3}+c} \quad \Rightarrow \quad|x|=b e^{t^{3}}$, where $b=e^{c}>0$ is arbitrary Now, $x(t)= \pm b e^{t^{3}}=a e^{t^{3}}$, where $a= \pm b \neq 0$ is arbitrary. Observing that $x \equiv 0$ is also a solution to the original differential equation, we may permit $a=0$ so that the solution is $x(t)=c e^{t^{3}}$ for c any arbitrary real number.
6. From $y^{\prime}=2 x \cos ^{2} y$ we get $\frac{1}{\cos ^{2} y} y^{\prime}=2 x$, and so by separation of variables comes $\int \sec ^{2} y d y=\int 2 x d x$. Integrating gives $\int \tan y d y=x^{2}+c$, where $c \in \mathbb{R}$ is arbitrary. From the initial condition it's seen that $y=\pi / 4$ when $x=0$, so $\tan \pi / 4=0^{2}+c \Rightarrow c=1$. Therefore the solution to the initial value problem is $\tan y=x^{2}+1$, or more explicitly $y=\arctan \left(x^{2}+1\right)$. Note: the explicit solution is a curve for which $y \in(-\pi / 2, \pi / 2)$ for all $x \in(-\infty, \infty)$, which does indeed pass through the initial point $(0, \pi / 4)$.
