1. 20 pts . A force of 400 newtons stretches a spring 2 meters. A mass of 50 kg is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m / s. Find the equation of motion, and put it in the form $x(t)=A \sin (\omega t+\varphi)$. What is the period of motion? At what times is the mass heading downward at a velocity of $5 \mathrm{~m} / \mathrm{s}$?
2. 20 pts. Find two linearly independent power series solutions to

$$
y^{\prime \prime}+x y^{\prime}+2 y=0
$$

about the ordinary point $x=0$. Determine at least the first four nonzero terms of each series.
3. 10 pts. Use the Laplace transform to solve the initial-value problem

$$
\frac{d y}{d t}+3 y=2, \quad y(0)=-3
$$

4. 20 pts. Use the Laplace transform to solve the initial-value problem

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=5 .
$$

$f(t)$	$\mathcal{L}[f](s)$	$\operatorname{Dom}(\mathcal{L}[f])$
$t \sin b t$	$\frac{2 b s}{\left(s^{2}+b^{2}\right)^{2}}$	$s>0$
$t \cos b t$	$\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}$	$s>0$
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$	$s>a$
$e^{a t} t^{n}, n=0,1, \ldots$	$\frac{n!}{(s-a)^{n+1}}$	$s>a$
$u(t-a), a \geq 0$	$\frac{e^{-a s}}{s}$	$s>0$
$\delta(t-a), a \geq 0$	$e^{-a s}$	$s>0$
$(f * g)(t)$	$\mathcal{L}[f(t)](s) \mathcal{L}[g(t)](s)$	

$\mathcal{L}\left[f^{\prime}\right](s)=s \mathcal{L}[f](s)-f(0)$
$\mathcal{L}\left[f^{\prime \prime}\right](s)=s^{2} \mathcal{L}[f](s)-s f(0)-f^{\prime}(0)$
$\mathcal{L}\left[e^{a t} f(t)\right](s)=\mathcal{L}[f(t)](s-a)$
$\mathcal{L}[f(t-a) u(t-a)](s)=e^{-a s} \mathcal{L}[f(t)](s)$
$\mathcal{L}[g(t) u(t-a)](s)=e^{-a s} \mathcal{L}[g(t+a)](s)$
$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
$\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
$\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]$
$\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
$\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]$

