1. 10 pts. Verify that the piecewise-defined function

$$
y=\left\{\begin{aligned}
-x^{2}, & x<0 \\
x^{2}, & x \geq 0
\end{aligned}\right.
$$

is a solution to $x y^{\prime}-2 y=0$ with interval of validity $(-\infty, \infty)$. (Take care finding y^{\prime} when $x=0$.)
2. 10 pts. Find all points $\left(x_{0}, y_{0}\right)$ on the $x y$-plane where the IVP

$$
\left(3 x^{2}-4 y\right) y^{\prime}=\sqrt{y}, \quad y\left(x_{0}\right)=y_{0}
$$

must have a unique solution.
3. 15 pts. Solve the initial-value problem

$$
\frac{d y}{d x}=\frac{1-2 x}{y}, \quad y(1)=-2 .
$$

Put the solution in explicit form and find the largest interval of validity I for the solution.
4. 15 pts . Solve the differential equation

$$
\frac{d y}{d x}=x^{2}(1+y)
$$

to get the most inclusive one-parameter family of explicit solutions possible. What is the largest interval of validity for the solutions?
5. 15 pts. Solve the linear IVP

$$
\frac{d y}{d x}=\frac{y}{x}+2 x+1, \quad y(-1)=8
$$

Write the solution in explicit form with all absolute values eliminated. What is the largest interval of validity for the solution?
6. 15 pts . Solve the exact equation

$$
y e^{x y}-\frac{1}{y}+\left(x e^{x y}+\frac{x}{y^{2}}\right) y^{\prime}=0 .
$$

Some Integration Formulas:

$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, \quad \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c, \quad \int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left|\frac{x}{a}\right|+c$,
$\int \tan x d x=\ln |\sec x|+c, \quad \int \cot x d x=\ln |\sin x|+c, \quad \int \sec x d x=\ln |\sec x+\tan x|+c$,
$\int \csc x d x=-\ln |\csc x+\cot x|+c$.

