1. 10 pts. Solve the nonlinear ODE

$$
y y^{\prime \prime}+\left(y^{\prime}\right)^{2}-y^{\prime}=0
$$

starting with the substitution $u=y^{\prime}$.
2. 10 pts . Obtain the first five nonzero terms of a Taylor series solution (centered at 0) to the initialvalue problem

$$
y^{\prime \prime}-2 y^{2}=4 x, \quad y(0)=-1, \quad y^{\prime}(0)=2
$$

3. Consider the initial-value problem

$$
y^{\prime \prime}+4 y=4 \cos x+3 \sin x-8, \quad y(0)=0, \quad y^{\prime}(0)=-2 .
$$

(a) 12 pts. Use the Method of Undetermined Coefficients to find a particular solution to the differential equation.
(b) 4 pts. Next give the general solution to the differential equation.
(c) 4 pts. Finally, solve the initial-value problem.
4. 15 pts. Use the Method of Variation of Parameters to find a particular solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=e^{-x} / x
$$

and then find the general solution.

Method of Undetermined Coefficients. Let $P_{m}(x)$ be a nonzero polynomial of degree m, and let $y_{p}(x)$ denote a particular solution to $a_{n} y^{(n)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(x)$.

1. If $f(x)=P_{m}(x) e^{\alpha x}$, then

$$
y_{p}(x)=x^{s} e^{\alpha x} \sum_{k=0}^{m} A_{k} x^{k}
$$

where $s=0$ if α is not a root of the auxiliary equation, otherwise s equals the multiplicity of α as a root of the auxiliary equation.
2. If $f(x)=P_{m}(x) e^{\alpha x} \cos \beta x$ or $f(x)=P_{m}(x) e^{\alpha x} \sin \beta x$ for $\beta \neq 0$, then

$$
y_{p}(x)=x^{s} e^{\alpha x}\left(\cos \beta x \sum_{k=0}^{m} A_{k} x^{k}+\sin \beta x \sum_{k=0}^{m} B_{k} x^{k}\right),
$$

where $s=0$ if $\alpha+i \beta$ is not a root of the auxiliary equation, otherwise s equals the multiplicity of $\alpha+i \beta$ as a root of the auxiliary equation.

Method of Variation of Parameters (2nd-Order Case).

$$
u_{1}(x)=\frac{1}{a_{2}} \int \frac{-y_{2}(x) f(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)} d x \quad \text { and } \quad u_{2}(x)=\frac{1}{a_{2}} \int \frac{y_{1}(x) f(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)} d x
$$

Some Most Excellent Formulae.

1. $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c$, for $a \in(0, \infty)$
2. $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c$, for $a \neq 0$
3. $\int \frac{1}{x \sqrt{x^{2}-a^{2}}} d x=\frac{1}{a} \sec ^{-1}\left|\frac{x}{a}\right|+c$, for $a \in(0, \infty)$
4. $\int \tan x d x=-\ln |\cos x|+c=\ln |\sec x|+c$
5. $\int \cot x d x=\ln |\sin x|+c$
6. $\int \sec x d x=\ln |\sec x+\tan x|+c$
7. $\int \csc x d x=-\ln |\csc x+\cot x|+c$
