1. 15 pts . Suppose that the temperature of a cup of tea obeys Newton's Law of Cooling. If the tea has a temperature of $200^{\circ} \mathrm{F}$ when first poured, and 1 minute later has cooled to $190^{\circ} \mathrm{F}$ in a room at $72^{\circ} \mathrm{F}$, find when the tea reaches a temperature of $120^{\circ} \mathrm{F}$.
2. 15 pts . A tank is used to conduct certain hydrodynamic experiments. After one experiment the tank contains 200 liters of a dye solution having a concentration of $1 \mathrm{~g} / \mathrm{liter}$. To prepare for the next experiment, the tank is rinsed with fresh water flowing in at a rate of 2 liters $/ \mathrm{min}$, the wellstirred solution flowing out at the same rate. Find the time that must elapse for the tank to have a concentration of dye that is 1% of its original value.
3. 15 pts. Using either the Wronskian or the definition of linear independence, show that the set of solutions $\left\{x, x^{-2}, x^{-2} \ln x\right\}$ to the differential equation

$$
x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 x y^{\prime}-4 y=0
$$

is a linearly independent set of functions on the interval $(0, \infty)$. Form the general solution to the differential equation.
4. 10 pts. Given that $y_{1}=x+1$ is a solution to

$$
\left(1-2 x-x^{2}\right) y^{\prime \prime}+2(1+x) y^{\prime}-2 y=0
$$

use reduction of order to find a second solution

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}(x)} d x .
$$

5. 10 pts. each Find the general solution to each.
(a) $2 y^{\prime \prime}-7 y^{\prime}+3 y=0$
(b) $2 y^{\prime \prime \prime}-5 y^{\prime \prime}+8 y^{\prime}-20 y=0$
6. 15 pts . Solve the initial-value problem:

$$
y^{\prime \prime}-2 y^{\prime}+y=0, \quad y(0)=5, \quad y^{\prime}(0)=10
$$

