| Math 250<br>Exam #4<br>Fall 2008 |     | (41 2 41 2 4 4) 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                | 20  | <b>1)</b> Find a general solution to $y''(\theta) + 2y'(\theta) + 2y(\theta) = e^{-\theta}\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                                | 20  | <b>2)</b> Find the solution to the initial value problem: $y'' + y' - 12y = e^t + e^{2t} - 1,  y(0) = 1,  y'(0) = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                                | 20  | 3) A 1 kg mass is attached to a spring with stiffness 6.25 N/m. The damping constant for the system is 3 N-sec/m. If the mass is pulled 0.25 m to the right of equilibrium and given an initial leftward velocity of 2 m/sec, when will it first return to its equilibrium position?                                                                                                                                                                                                                                                                                                           |
| 4                                | 20  | 4) For the system given in #3, find the quasiperiod and quasifrequency of the mass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                  |     | <b>5)</b> A 0.5 kg mass is attached to a spring with stiffness 8 N/m. The damping constant for the system is 0.4 N-sec/m. If the mass is moved 1 m to the left of equilibrium and released, what is the maximum displacement to the right that it will attain?                                                                                                                                                                                                                                                                                                                                 |
| 5                                | 20  | <ul> <li>6) An 8-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume the spring constant is 40 N/m and the damping constant is 3 N-sec/m. At time t=0 an external force of 2 sin 2t is applied to the system. Determine the amplitude and frequency of the steady-state solution. Acceleration due to gravity is g = 9.8 m/sec².</li> <li>7) Find the Laplace transform of te³t using the definition of the Laplace transform.</li> <li>8) Using the definition of Laplace transform, find the Laplace transform of [1-t, 0 &lt; t &lt; 1]</li> </ul> |
| 6                                | 20  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                | 20  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                | 20  | $f(t) = \begin{cases} 1 - t, & 0 < t < 1 \\ 0, & t > 1 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| total                            | 160 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| curve                            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| %                                |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |