MAT 250 Exam #4A Fall 2004		Choose any 3 of the 4 problems below to work. Cross out the 1 problem you've elected <u>not</u> to do!
1	15	1) Using unit step functions, create an infinite series for the periodic function with domain $t\in(0,\infty)$ whose graph begins as shown
2	15	
3	15	
4	15	2) Solve the initial value problem: $y'' + 2y' - 3y = \delta(t-1) - \delta(t-2), y(0) = 2, y'(0) = -2$
Total	60	3) In the study of a nonlinear spring with periodic forcing, the equation $y'' + ky + ry^3 = A\cos\omega t$ arises. Let $A = k = r = 1$ and $\omega = 8$. Find the first three nonzero terms in the Taylor polynomial approximation to the solution with initial values $y(0) = 0, \ y'(0) = 1$.
		4) Determine the convergence set of the power series $\sum_{n=1}^{\infty} \frac{3^{-n} x^n}{n}$.

MAT 250 Exam #4B Fall 2004			Choose any 3 of the 4 problems below to work. Cross out the 1 problem you've elected <u>not</u> to do!
Prob. Num.	Point Value	Points Given	1) Find the power series expansion of the form $\sum_{n=0}^\infty a_n x^n$ for $f(x)+g(x)$, given that $f(x)=\sum_{n=1}^\infty \frac{2}{3n-5}x^{n-1}$ and $g(x)=\sum_{n=3}^\infty 2^{-n+1}x^{n-3}$.
1	15		2) Find a power series expansion about $x=0$ for a general solution to $y''-xy'+4y=0$.
2	15		3) Find at least the first four nonzero terms in a power series expansion about $x=0$ for the solution to the initial value problem $(x^2-x+1)y''-y'-y=0$, $y(0)=0$, $y'(0)=1$.
3	15		y(0) = 0, y(0) = 1.
4	15		4) Find a power series expansion for $f'(x)$, given that $f(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$.
Sub- Total	45		
Grand Total	90		
Curve			
Grade			