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1
Initial-Value Problems

1.1 – Normed Vector Spaces

A suitable setting for our study of ordinary differential equations and dynamical systems is
the normed vector space. First we make clear what precisely is meant by a norm.

Definition 1.1. A norm on a vector space X over the field F ∈ {R,C} is a mapping
∥·∥ : X → [0,∞) having the following properties.

N1. ∥x∥ ≥ 0 for x ∈ X.

N2. ∥x∥ = 0 if and only if x = 0.

N3. ∥αx∥ = |α|∥x∥ for α ∈ F and x ∈ X.

N4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for x, y ∈ X.

Property (N4) is the famous triangle inequality, and with it one can derive the inverse
triangle inequality which states that∣∣∥x∥ − ∥y∥

∣∣ ≤ ∥x− y∥
for x, y ∈ X.

A vector space X equipped with a norm ∥·∥ is called a normed vector space, and may be
denoted by the symbol (X, ∥·∥). The norm naturally induces a metric that gives the distance
between vectors x, y ∈ X to be ∥x − y∥. Such a metric, in turn, induces a topology on X
which defines a set S ⊆ X to be open if, for each s ∈ S, there exists some r > 0 such that the
open ball

Br(s) :=
{
x ∈ X : ∥x− s∥ < r

}
is a subset of S. If (X, ∥·∥) is a finite-dimensional vector space, then any choice for the norm
∥·∥ will induce the same topology on X, meaning in particular that properties we define later
such as convergence and continuity are preserved.

A set S ⊆ X is closed if its complement X \ S is open, and the symbol Br(s) denotes a
closed ball centered at s with radius r; that is,

Br(s) :=
{
x ∈ X : ∥x− s∥ ≤ r

}
.
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Thus Br(s) = Br(s) ∪ ∂Br(s), with ∂Br(s) being the boundary of the ball.

Example 1.2. Suppose (X, ∥·∥X) and (Y, ∥·∥Y ) are normed vector spaces over a field F. The
set X × Y becomes a vector space if we define vector addition by

(x1, y1) + (x2, y2) = (x1 + x2, y1, y2)

for (x1, y1), (x2, y2) ∈ X × Y , and scalar multiplication by

α(x, y) = (αx, αy)

for (x, y) ∈ X × Y and α ∈ F. Such a vector space is usually denoted by X ⊕ Y and called the
direct sum of X and Y . There are many choices of norm for X ⊕ Y . Indeed, defining

∥(x, y)∥p =
(
∥x∥pX + ∥y∥pY

)1/p
(1.1)

for any real constant p ∈ [1,∞) satisfies the properties of a norm on X⊕Y , with p = 1 resulting
in the rectilinear norm and p = 2 the Euclidean norm. For instance, when p = 1 the
triangle inequality is readily found to hold, with

∥(x1, y1) + (x2, y2)∥1 = ∥(x1 + y1, x2 + y2)∥1 = ∥x1 + x2∥X + ∥y1 + y2∥Y

≤
(
∥x1∥X + ∥x2∥X

)
+
(
∥y1∥Y + ∥y2∥Y

)
=
(
∥x1∥X + ∥y1∥Y

)
+
(
∥x2∥X + ∥y2∥Y

)
= ∥(x1, y1)∥1 + ∥(x2, y2)∥1

for any (x1, y1), (x2, y2) ∈ X ⊕ Y .
Provided that X ⊕ Y is a finite-dimensional vector space (which is the case whenever X and

Y are both finite-dimensional), the possible norms formulated by (1.1) are all equivalent in the
sense that they induce the same topology on X ⊕ Y , and so properties such as convergence and
continuity are unaffected by the choice of value for p. ■

Given a sequence (xn)
∞
n=1 in X, we say that xn converges to x ∈ X if

lim
n→∞

∥xn − x∥ = 0; (1.2)

that is, if for each ϵ > 0 there exists an integer n0 such that ∥xn − x∥ < ϵ for all n ≥ n0. We
may also write (1.2) as limn→∞ xn = x or simply xn → x, and call x the limit of the sequence.
If there exists no x ∈ X for which (1.2) holds, then the sequence (xn) is said to diverge.
According to Definition 1.1 the norm in (X, ∥·∥) is only given to have domain X, and so there is
no occasion to ponder the possibility that (xn) “converges” to something that is not an element
of X.

A sequence (xn) in (X, ∥·∥) is called a Cauchy sequence if for each ϵ > 0 there exists
integer k such that ∥xm − xn∥ < ϵ for all m,n ≥ k. We say a normed vector space is complete
if every Cauchy sequence in the space converges (i.e. has a limit). A complete normed vector
space is otherwise known as a Banach space.

Some properties of limits involving the vector addition, scalar multiplication, and norm
operations on a Banach space are given in the following proposition.
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Proposition 1.3. Let (X, ∥·∥) be normed vector spaces over F ∈ {R,C}, let (xn) and (yn) be
sequences in X, and let (αn) be a sequence in F. Suppose x, y ∈ X and α ∈ F. If xn → x,
yn → y, and αn → α, then ∥xn∥ → ∥x∥, xn + yn → x+ y, and αnxn → αx.

Proof. We show only that αnxn → αx, leaving the rest as an exercise. First, with the inverse
triangle inequality we find

0 ≤
∣∣|αn| − |α|

∣∣ ≤ |αn − α|,

and since limn→∞ |αn − α| = 0 by hypothesis, the squeeze theorem implies that

lim
n→∞

∣∣|αn| − |α|
∣∣ = 0,

and hence limn→∞ |αn| = |α|. Now, by the triangle inequality followed by use of property (N3),

∥αnxn − αx∥ = ∥αnxn − αnx+ αnx− αx∥

≤ ∥αnxn − αnx∥+ ∥αnx− αx∥

= |αn|∥xn − x∥+ |αn − α|∥x∥,
and since

lim
n→∞

(
|αn|∥xn − x∥+ |αn − α|∥x∥

)
= lim

n→∞
|αn| · lim

n→∞
∥xn − x∥+ ∥x∥ lim

n→∞
|αn − α|

= |α| · 0 + ∥x∥ · 0 = 0

by the usual laws of limits in F, another application of the squeeze theorem leads us to conclude
that limn→∞ ∥αnxn − αx∥ = 0. ■

Definition 1.4. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed vector spaces. A mapping F : X → Y
is continuous at x̂ ∈ X if for each ϵ > 0 there exists some δ > 0 such that, for any x ∈ X,
∥x− x̂∥X < δ implies ∥F (x)− F (x̂)∥Y < ϵ.

The following proposition offers an equivalent means of characterizing continuity that is
often more convenient to work with.

Proposition 1.5. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed vector spaces. A mapping F : X → Y
is continuous at x̂ ∈ X if and only if F (xn) → F (x̂) for every sequence (xn) in X that converges
to x̂.

Proof. Suppose F is continuous at x̂ ∈ X, and let (xn) be a sequence in X that converges to
x̂. Fix ϵ > 0. Then there exists δ > 0 such that ∥x − x̂∥X < δ implies ∥F (x) − F (x̂)∥Y < ϵ.
But xn → x̂ implies there exists integer n0 such that ∥xn − x̂∥X < δ for all n ≥ n0, and thus
∥F (xn)− F (x̂)∥Y < ϵ for all n ≥ n0. Therefore F (xn) → F (x̂).

For the converse we prove the contrapositive. Suppose that F is not continuous at x̂. Then
there exists some ϵ > 0 such that, for each δ > 0, there can be found some xδ ∈ X for which
∥xδ − x̂∥X < δ and yet ∥F (xδ)− F (x̂)∥Y ≥ ϵ. In particular, for each n ≥ 1 there exists xn ∈ X
such that ∥xn − x̂∥X < 1/n and yet ∥F (xn) − F (x̂)∥Y ≥ ϵ. In this manner we construct a
sequence (xn)

∞
n=1 such that xn → x̂ but (F (xn))

∞
n=1 fails to converge to F (x̂). ■
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Example 1.6. Strictly speaking, given a normed vector space (X, ∥·∥), the vector addition
operation + has domain X ⊕X and thus is a function of two independent variables. Without
bringing to bear any additional machinery it can be shown that + is a jointly continuous
function on X ⊕X, meaning that for fixed x the mapping X → X given by (x, y) 7→ x+ y for
all y ∈ X is continuous on X, and for fixed y the mapping (x, y) 7→ x+ y for all x ∈ X is also
continuous on X. But is + continuous on X ⊕X in the sense of Definition 1.4? A careful study
of the definition shows this question to be meaningless unless X ⊕X is equipped with a norm.
What norm should this be?

From Example 1.2 we know that, so long as X ⊕X is a finite-dimensional vector space, the
choice of norm will have no impact on continuity. Thus, if + : X ⊕X → X is continuous for
one choice of norm for X ⊕X, then it will be continuous for any choice of norm. Therefore we
may as well equip X ⊕X with the rectilinear norm given by (1.1) for p = 1.

Fix (x, y) ∈ (X ⊕X, ∥·∥1), and let (xn, yn) be a sequence in X ⊕X that converges to (x, y).
Then

lim
n→∞

(
∥xn − x∥+ ∥yn − y∥

)
= lim

n→∞
∥(xn − x, yn − y)∥1 = lim

n→∞
∥(xn, yn)− (x, y)∥1 = 0,

and since

0 ≤ ∥(xn + yn)− (x+ y)∥ = ∥(xn − x) + (yn − y)∥ ≤ ∥xn − x∥+ ∥yn − y∥ → 0,

the squeeze theorem implies that

lim
n→∞

∥(xn + yn)− (x+ y)∥ = 0,

or equivalently xn + yn → x+ y. Therefore + is continuous at (x, y) by Proposition 1.5. ■

Normed vector spaces consisting of collections of continuous functions will be of especial
importance in the sequel, enough so to warrant some special notations. Given sets U and V ,
let C(U, V ) denote the collection of continuous functions U → V , and let Cb(U, V ) denote the
collection of bounded continuous functions U → V . Quite often V = R, and so we also define
C(U) = C(U,R) and Cb(U) = Cb(U,R).

Sequences of functions will also figure prominently in upcoming theoretical developments,
with one mode of convergence for such sequences, called uniform convergence, having particular
significance.

Definition 1.7. Let (X, ∥·∥) be a normed vector space and S ⊆ R, and suppose fn : S → X
for all n ∈ N. We say (fn)n∈N converges uniformly to f on S if for every ϵ > 0 there exists
some n0 ∈ N such that

∥fn(t)− f(t)∥ < ϵ

for all n > n0 and t ∈ S.

We use the symbol fn−→u f to denote that the sequence (fn) converges uniformly to f
on some set. Definition 1.7 could be generalized to let S be a subset of an arbitrary normed
vector space, as opposed to a subset of R, but we shall have no use for such a generalization at
this juncture. One reason uniform convergence is desirable is that it preserves the property of
continuity. The following proposition reveals precisely what this means.
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Proposition 1.8. Let (X, ∥·∥) be a normed vector space and S ⊆ R, and suppose fn : S → X is
continuous on S for each n ∈ N. If (fn)n∈N converges uniformly to f on S, then f is continuous
on S.

Proof. Suppose (fn) converges uniformly to f on S. Fix s ∈ S, and let ϵ > 0. There is an
integer n0 such that ∥fn(t)− f(t)∥ < ϵ/3 for all n > n0 and t ∈ S, and so ∥fn(s)− f(s)∥ < ϵ/3
for any n > n0 as well. Fixing m > n0, the continuity of fm at s implies there exists some
δ > 0 such that ∥fm(t) − fm(s)∥ < ϵ/3 for all t ∈ S for which |t − s| < δ. Now, for any
t ∈ (s− δ, s+ δ) ∩ S, we have

∥f(t)− f(s)∥ =
∥∥[f(t)− fn(t)] + [fn(t)− fn(s)] + [fn(s)− f(s)]

∥∥
≤ ∥f(t)− fm(t)∥+ ∥fm(t)− fm(s)∥+ ∥fm(s)− f(s)∥

<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ.

This shows that f is continuous at s, and since s ∈ S is arbitrary it follows that f is continuous
on S. ■

Example 1.9. Let I ⊆ R be a compact (i.e. closed and bounded) interval, and define a norm
on C(I) by

∥f∥∞ = sup
t∈I

|f(t)|, (1.3)

called the sup norm or uniform norm. That ∥·∥∞ satisfies the four properties of a norm in
Definition 1.1 we leave to the reader to verify, but we note here that ∥f∥∞ ∈ [0,∞) for any f in
the normed vector space (C(I), ∥·∥∞) is assured by the compactness of I and the extreme value
theorem.

It is straightforward to check that a sequence (fn) converges to f in the space (C(I), ∥·∥∞) if
and only if (fn) converges uniformly to f on I. That is, convergence with respect to the uniform
norm is synonymous with uniform convergence.

If I is not compact then ∥·∥∞ will fail to be a norm on C(I). For instance if I = (0, 1),
which is not closed and thus not compact, we find f(t) = 1/t to be an element of C(I) such that
∥f∥∞ = ∞, and therefore ∥·∥∞ is not a norm. A similar difficulty arises if we let I = [0,∞)
and f(t) = t. However, for I not compact, we may restrict the domain of ∥·∥∞ to Cb(I) ⊆ C(I)
in order to construct the normed vector space (Cb(I), ∥·∥∞). ■

A fundamental fact from the subject of real analysis is that the normed vector space (R, |·|)
is complete, where the norm |·| is the usual absolute value operation. This fact is used in the
proof of the following.

Theorem 1.10. Let I ⊆ R be an interval.

1. If I is compact, then (C(I), ∥·∥∞) is a Banach space.
2. If I is arbitrary, then (Cb(I), ∥·∥∞) is a Banach space.

Proof.
Proof of (1). Suppose I ⊆ R is compact, so that (C(I), ∥·∥∞) is properly a normed vector space.
We only need to show that (C(I), ∥·∥∞) is complete. Let (fn) be a Cauchy sequence in C(I), so
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for any ϵ > 0 there exists an integer k such that ∥fm − fn∥∞ < ϵ for all m,n > k. In light of
(1.3) this implies that |fm(t)− fn(t)| < ϵ for all m,n > k and t ∈ I. Thus (fn(t)) is a Cauchy
sequence in (R, |·|) for all t ∈ I, and since (R, |·|) is a Banach space we conclude that (fn(t))
converges to some point in R denoted by f(t) for each t ∈ I. That is, (fn) converges pointwise
to f : I → R.

Next to show is that fn → f with respect to the uniform norm ∥·∥∞ on C(I), which will be
accomplished by demonstrating that fn−→u f on I. Fix ϵ > 0. Then there exists integer k such
that |fn(t)− fm(t)| < ϵ/2 for all m,n > k and t ∈ I. From this comes

|fm(t)− fn(t)| <
ϵ

2
,

whence
fn(t)−

ϵ

2
< fm(t) < fn(t) +

ϵ

2
,

for all m,n > k and t ∈ I. This implies that

fn(t)−
ϵ

2
≤ lim

m→∞
fm(t) ≤ fn(t) +

ϵ

2
,

hence
fn(t)−

ϵ

2
≤ f(t) ≤ fn(t) +

ϵ

2
,

and finally

|fn(t)− f(t)| ≤ ϵ

2
< ϵ (1.4)

for n > k and t ∈ I. Therefore fn−→u f on I, and since f ∈ C(I) by Proposition 1.8, we conclude
that (C(I), ∥·∥∞) is complete.

Proof of (2). Suppose I ⊆ R is any interval, and let (fn) be a Cauchy sequence in Cb(I). Since
(Cb(I), ∥·∥∞) is a normed vector space the proof that (fn) converges uniformly to some f ∈ C(I)
is the same as before, and so it only remains to show that f : I → R is bounded to place f in
Cb(I).

Let ϵ > 0. Then (1.4) holds for all n > k and t ∈ I, and so for any particular m > k we have
|fm(t) − f(t)| < ϵ for all t ∈ I. Suppose f is not bounded on I, and let M > 0. Then there
exists some τ ∈ I for which f(τ) > M + ϵ, and thus we obtain fm(τ) > M . Since M > 0 is
arbitrary it follows that fm is not bounded on I, contradicting the hypothesis that (fn) is a
sequence in Cb(I). Therefore f is bounded on I. ■

Unless otherwise indicated, we take the norm on Fn for F ∈ {R,C} and n ∈ N to be the
Euclidean norm |·| given by

|x| =

(
n∑
k=1

|xk|2
)1/2

(1.5)

for any x := (x1, . . . , xn) ∈ Fn. This convention is relevant to the following proposition, which
generalizes Theorem 1.10.

Proposition 1.11. Let I ⊆ R be an interval.

1. If I is compact, then (C(I,Rn), ∥·∥∞) is a Banach space.
2. If I is arbitrary, then (Cb(I,Rn), ∥·∥∞) is a Banach space.
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Proof.
Proof of (1). Suppose I ⊆ R is compact, and let (fk)k∈N be Cauchy in (C(I,Rn), ∥·∥∞). Thus
for each k ∈ N we have

fk(t) =
(
fk1(t), . . . , fkn(t)

)
=
(
fkj(t)

)n
j=1

(1.6)

for t ∈ I. The continuity of fk on I implies the continuity of each component function fkj : I → R
on I. Fix ϵ > 0. Then there exists ℓ ∈ N such that ∥fm − fk∥∞ < ϵ for all m, k > ℓ, and in
accordance with the Euclidean norm defined by (1.5) it follows that√√√√ n∑

j=1

|fmj(t)− fkj(t)|2 < ϵ ∀m, k > ℓ ∀t ∈ I,

and hence, for each 1 ≤ j ≤ n,

∥fmj − fkj∥∞ < ϵ ∀m, k > ℓ.

For each j, then, we find (fkj)k∈N to be a Cauchy sequence in (C(I), ∥·∥∞), and by Theorem 1.10
there exists φj ∈ C(I) such that fkj−→u φj. Hence fk = (fkj)

n
j=1−→u (φj)

n
j=1 := φ as k → ∞.

The continuity of each φj : I → R implies the continuity of φ : I → Rn, and so every Cauchy
sequence in C(I,Rn) converges to some element in C(I,Rn). This makes C(I,Rn) complete, and
therefore a Banach space.

Proof of (2). Let I ⊆ R be arbitrary, and let (fk)k∈N be Cauchy in (Cb(I,Rn), ∥·∥∞) for fk given
by (1.6). The proof of part (1) shows (fk) converges uniformly to some φ ∈ (C(I,Rn), ∥·∥∞),
and so it only remains to show that φ is bounded. Also in the proof of part (1) it was shown
that (fkj)k∈N is Cauchy in C(I) for each 1 ≤ j ≤ n. Now, the boundedness of each fk for
k ∈ N implies the boundedness of each fkj for k ∈ N and 1 ≤ j ≤ n, and hence for each j the
sequence (fkj)k∈N is Cauchy in Cb(I). By part (2) of Theorem 1.10 it follows that each (fkj)k∈N
converges uniformly to some φj ∈ Cb(I), and this in turn implies that fk−→u (φj)

n
j=1 = φ. Since

the boundedness of each φj implies the boundedness of φ, we conclude that φ ∈ Cb(I,Rn) and
therefore (Cb(I,Rn), ∥·∥∞) is complete. ■

We end this section with a couple results concerning a sequence that lies in a closed subset
of a normed vector space, whether complete or not.

Proposition 1.12. Let (X, ∥·∥) be a normed vector space and S ⊆ X closed. If (xn) is a
sequence in S that converges to x, then x ∈ S.

Proof. Suppose (xn) is a sequence in S, so that xn ∈ S for all n. Suppose x /∈ S. Then
x ∈ X \ S, and since X \ S is open there exists some r > 0 such that Br(x) ⊆ X \ S. It follows
that xn /∈ Br(x) for all n, which is to say ∥xn − x∥ ≥ r for all n, and thus the sequence (xn)
cannot converge to x. Therefore if (xn) converges to x, it must be that x ∈ S. ■

Proposition 1.13. Let (X, ∥·∥) be a Banach space and S ⊆ X. Then S is closed if and only if
every Cauchy sequence in S converges to a vector in S.
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Proof. Suppose S is closed, and let (xn) be a Cauchy sequence in S. Then (xn) converges to
some x ∈ X since (X, ∥·∥) is complete, and so x ∈ S by Proposition 1.12.

We prove the contrapositive of the converse. Suppose S is not closed. Then X \ S is not
open, and so there exists some x ∈ X \ S such that any open ball centered at x is not a subset
of X \ S. Thus for each n ∈ N there exists xn ∈ B1/n(x) ∩ S. Clearly xn → x, so that (xn)n∈N
is a convergent—and hence Cauchy—sequence in X; and since xn ∈ S for all n, we see that
(xn) is a Cauchy sequence in S that does not converge to a vector in S. ■

The necessity of having (X, ∥·∥) be complete in Proposition 1.13 is readily seen by considering
the sequence (1/n)n∈N in the normed vector space ((0, 2), |·|). In the topology of this space
(induced by the Euclidean norm) the interval (0, 1] is a closed set, and (1/n)n∈N is a Cauchy
sequence in this closed set that fails to converge to an element of the set.

While any subset of a metric space is a metric space in its own right, it is not generally
true that a subset of a vector space (normed or otherwise) is itself a vector space. Thus, the
conclusion of Proposition 1.13 notwithstanding, care must be taken not to speak of an arbitrary
closed subset of a Banach space as being itself a Banach space. To put it plainly, the set S in
Proposition 1.13 may fail to be closed under either the operation of vector addition or scalar
multiplication.
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1.2 – Calculus on Euclidean Spaces

We now give some calculus results without proof, as they are typically broached in advanced
calculus or elementary analysis texts; but nonetheless it will be convenient to have many of
the tools most useful for the study of ordinary differential equations collected in one place.
The setting will be specialized to Euclidean normed vector spaces (Rn, |·|), as this will suffice
to carry us far into the sequel. Letting En denote the standard basis for Rn consisting of
the usual set of n orthonormal vectors ei := (δij)

n
j=1,

1 the standard matrix for a linear map
L : Rn → Rm we define to be the m× n matrix [L] corresponding to L with respect to bases En
and Em. Hence L(x) = [L]x for all x ∈ Rn, with x ∈ Rn×1 specifically (i.e. the components of
vector x are presented as an n× 1 matrix) in order for [L]x to be defined.2

Given an open set U ⊆ Rn, a function F : U → Rm is differentiable at a ∈ U if there exists
a linear map L : Rn → Rm such that

lim
h→0

|F (a+ h)− F (a)− L(h)|
|h|

= 0.

The map L is called the total derivative of F at a,3 which herein shall be denoted by dF (a).
Letting F1, . . . , Fm denote the real-valued components of F , it is a fact that if

F (x1, . . . , xn) =
(
F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)

)
is differentiable at a, then all the first-order partial derivatives of F exist at a, and the standard
matrix [dF (a)] for dF (a) : Rn → Rm is the m× n matrix with ij-entry [dF (a)]ij given by

[dF (a)]ij =
∂Fi
∂xj

(a)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, so that

[dF (a)] =


∂F1

∂x1
(a) · · · ∂F1

∂xn
(a)

...
. . .

...
∂Fm
∂x1

(a) · · · ∂Fm
∂xn

(a)

. (1.7)

This is the Jacobian (or derivative) matrix of F at a. If dF (a) happens to be a square
matrix, then its determinant det(dF (a)) := det([dF (a)]) is the Jacobian determinant of F
at a. Omitting the argument a, the operator dF = [∂Fi/∂xj]m,n is the Jacobian matrix of
F .

Arguably the most straightforward means of determining that a function is differentiable on
some open set is to check that its first-order partial derivatives exist and are continuous on the
set.

Proposition 1.14. If U ⊆ Rn is open, then F : U → Rm is differentiable at each point in U if
all the first-order partial derivatives of F exist and are continuous on U .

1Here δij is the Kronecker delta function: δij = 0 if i ̸= j, and δii = 1.
2It will not be our habit to distinguish between Rn and Rn×1 save on occasions when it serves to make

definitions precise.
3Other common terms are total differential, derivative, or differential of F at a.
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Having waded in this far, we would be remiss if we did not at least state the chain rule for
total derivatives.

Theorem 1.15 (Total Derivative Chain Rule). Let U ⊆ Rn and V ⊆ Rm be open. If
F : U → Rm is differentiable at a ∈ U , F (U) ⊆ V , and G : V → Rℓ is differentiable at F (a),
then G ◦ F is differentiable at a with

d(G ◦ F )(a) = dG(F (a)) ◦ dF (a).

Remark. From elementary linear algebra we know the standard matrix [dG(F (a)) ◦ dF (a)]
for dG(F (a)) ◦ dF (a) to be the matrix given by the product [dG(F (a))][dF (a)]. Thus the total
derivative chain rule as presented in Theorem 1.15 may be written as

[d(G ◦ F )(a)] = [dG(F (a))][dF (a)],

so that for any x ∈ Rn×1 we find d(G ◦ F )(a)(x) to be the vector in Rℓ×1 resulting from the
matrix product [dG(F (a))][dF (a)]x. ■

A function Φ : U ⊆ Rn+1 → Rm may be regarded as depending on (t, x), with t ∈ R and
x ∈ Rn, and it may occasion that we are interested in the variation in the value of Φ(t, x) as t is
held constant and x varies. Of course we speak here of what is essentially the partial derivative
of Φ with respect to x, but for fixed t the function Φ(t, ·) maps from a subset of Rn into Rm just
as F does in Theorem 1.15, and so our partial derivative must be formulated in a manner that
accords with (1.7). So there is no misunderstanding, for a ∈ U we employ the special notation
∂xΦ(a) to denote the partial derivative with respect to x of Φ at a, which for

Φ(t, x1, . . . , xn) =
(
Φ1(t, x1, . . . , xn), . . . ,Φm(t, x1, . . . , xn)

)
is the linear transformation ∂xΦ(a) : Rn → Rm whose standard matrix [∂xΦ(a)] has ij-entry
given by

[∂xΦ(a)]ij =
∂Φi

∂xj
(a)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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1.3 – Fixed Points and Contractions

A fixed point of a mapping f : X → Y is a point p ∈ X such that f(p) = p. Clearly for
such a function to have any chance of possessing a fixed point the sets X and Y must not be
disjoint. We shall be especially interested in the fixed points of mappings known as contractions.

Definition 1.16. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed vector spaces. A function K : S ⊆
X → Y is a contraction mapping on S if there exists a constant θ ∈ [0, 1), called the
contraction constant, such that

∥K(x1)−K(x2)∥Y ≤ θ∥x1 − x2∥X
for all x1, x2 ∈ S.

A contraction mapping on a subset S of (X, ∥·∥) may also be called a contraction on S ,
or simply a contraction if S = X. We will be dealing almost exclusively with contractions for
which the set Y in Definition 1.16 is equal to X.

Generalizing the notion of a contraction mapping, a function F : S ⊆ (X, ∥·∥X) → (Y, ∥·∥Y )
is Lipschitz continuous on S if there exists a constant θ ∈ [0,∞) such that

∥F (x1)− F (x2)∥Y ≤ θ∥x2 − x2∥X (1.8)

for all x1, x2 ∈ S. The inequality (1.8) is a Lipschitz condition for F on S, and θ is the
Lipschitz constant. Clearly a contraction mapping on S is also Lipschitz continuous on S.

We say F : S ⊆ (X, ∥·∥X) → (Y, ∥·∥Y ) is locally Lipschitz continuous on S if for each
x ∈ S there exists some open set O containing x such that F is Lipschitz continuous on O ∩ S.
The following proposition we give without proof.

Proposition 1.17. If F : S ⊆ (Rn, |·|) → (Rm, |·|) is locally Lipschitz continuous on S and C
is a compact set such that C ⊆ S, then F is Lipschitz continuous on C.

The next proposition shows that Lipschitz continuity is a stronger condition on a function
than the conventional continuity of Definition 1.4.

Proposition 1.18. If F : S ⊆ (X, ∥·∥X) → (Y, ∥·∥Y ) is Lipschitz continuous on S, then F is
continuous on S.

Proof. Suppose F is Lipschitz continuous on S, so there is some θ ≥ 0 such that (1.8) holds for
all x1, x2 ∈ S. Fix x0 ∈ S and let ϵ > 0. If θ = 0, then (1.8) implies that ∥F (x)−F (x0)∥Y = 0 < ϵ
for all x ∈ S, and thus F is continuous at x0. If θ > 0, choose δ = ϵ/θ, and suppose x ∈ S is
such that ∥x− x0∥X < δ. Then we have∥∥F (x)− F (x0)

∥∥
Y
≤ θ∥x− x0∥X < θ · ϵ

θ
= ϵ,

and again F is continuous at x0. Since x0 ∈ S is arbitrary, we conclude that F is continuous on
S. ■

With the proposition above we immediately obtain the following result that will be needed
presently to prove the contraction principle.
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Corollary 1.19. A contraction mapping is continuous on its domain.

A connection between fixed points and contractions is made by the following theorem, called
either the contraction principle or the Banach fixed-point theorem.

Theorem 1.20 (Contraction Principle). Let (X, ∥·∥) be a Banach space and ∅ ̸= S ⊆ X
closed, and suppose K : S → S is a contraction mapping with contraction constant θ. Then K
has a unique fixed point x∗ ∈ S, and moreover

∥Kn(x)− x∗∥ ≤ θn

1− θ
∥K(x)− x∥ (1.9)

for all n ∈ N and x ∈ S.

Proof. Suppose x1, x2 ∈ S are fixed points for K. Then

∥x1 − x2∥ = ∥K(x1)−K(x2)∥ ≤ θ∥x1 − x2∥,

and so if ∥x1 − x2∥ ≠ 0 then the contradiction θ ≥ 1 results. Hence ∥x1 − x2∥ = 0, so that
x1 = x2. This proves the uniqueness of any fixed point that K may have in S.

Now fix x0 ∈ S, and define the sequence xn+1 = K(xn) for n ≥ 0. We prove by induction
that

∀n ∈ N
(
∥xn+1 − xn∥ ≤ θn∥x1 − x0∥

)
. (1.10)

That K is a contraction implies

∥x2 − x1∥ = ∥K(x1)−K(x0)∥ ≤ θ∥x1 − x0∥,

thereby verifying the inequality in (1.10) when n = 1. Suppose the inequality holds for some
arbitrary n ∈ N. Then

∥xn+2 − xn+1∥ = ∥K(xn+1)−K(xn)∥ ≤ θ∥xn+1 − xn∥ ≤ θ · θn∥x1 − x0∥ = θn+1∥x1 − x0∥,

and (1.10) is proven. Since θ ∈ [0, 1), one important implication of (1.10) that comes via the
squeeze theorem is that

lim
n→∞

∥xn+1 − xn∥ = 0. (1.11)

Next, for m > n we use the triangle inequality and (1.10) to obtain

∥xm − xn∥ =

∥∥∥∥∥
m∑

j=n+1

(xj − xj−1)

∥∥∥∥∥ ≤
m∑

j=n+1

∥xj − xj−1∥

≤
m∑

j=n+1

θj−1∥x1 − x0∥ =
m−n−1∑
j=0

θj+n∥x1 − x0∥

= θn∥x1 − x0∥
m−n−1∑
j=0

θj = θn∥x1 − x0∥ ·
1− θm−n

1− θ

=
θn − θm

1− θ
∥x1 − x0∥ ≤ θn

1− θ
∥x1 − x0∥.

(1.12)
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Since θ ∈ [0, 1), for each ϵ > 0 there exists some ℓ ∈ N such that

θℓ

1− θ
∥x1 − x0∥ < ϵ

and so ∥xm − xn∥ < ϵ for all m,n ≥ ℓ by (1.12) and its counterpart in which the roles of m
and n are reversed. This shows that (xn)n∈N is a Cauchy sequence in S, and since (X, ∥·∥) is a
Banach space and S ⊆ X is closed, by Proposition 1.13 there exists x∗ ∈ S such that xn → x∗.
Because K is continuous on S by Corollary 1.19, we also have K(xn) → K(x∗).

Now, by Proposition 1.3 and (1.11),

∥K(x∗)− x∗∥ =
∥∥∥ lim
n→∞

K(xn)− lim
n→∞

xn

∥∥∥ = lim
n→∞

∥xn+1 − xn∥ = 0,

which shows that K(x∗) = x∗ and thus x∗ is a fixed point for K.
Finally, since xn = Kn(x0) by induction, from (1.12) we have

∥Kn(x0)− x∗∥ = lim
m→∞

∥Kn(x0)− xm∥ ≤ θn

1− θ
∥x1 − x0∥ =

θn

1− θ
∥K(x0)− x0∥

for any n ∈ N. The point x0 ∈ S being arbitrary, we have proven (1.9) for all n ∈ N and
x ∈ S. ■

An occasionally useful approach to determining whether a real-valued function of a single
real variable is a contraction mapping is the following.

Proposition 1.21. Suppose f is continuous on [a, b] and differentiable on (a, b). If there exists
some θ ∈ [0, 1) such that |f ′(x)| ≤ θ for all x ∈ (a, b), then f is a contraction mapping on
([a, b], |·|).

Proof. Suppose there exists θ ∈ [0, 1) such that |f ′(t)| ≤ θ for all t ∈ (a, b). To show is that,
for all t1, t2 ∈ [a, b],

|f(t2)− f(t1)| ≤ θ|t2 − t1|. (1.13)

Let t1, t2 ∈ [a, b]. We assume that t1 ≠ t2 since (1.13) clearly holds whenever t1 = t2, with
t1 < t2 for definiteness. By the mean value theorem there exists τ ∈ (t1, t2) such that

f ′(τ) =
f(t2)− f(t1)

t2 − t1
,

whence we obtain ∣∣∣∣f(t2)− f(t1)

t2 − t1

∣∣∣∣ = |f ′(τ)| ≤ θ,

which in turn yields (1.13). ■

Example 1.22. The Newton-Raphson method is an algorithm for approximating a zero ξ
of a real-valued function f of a single real variable x to an arbitrary degree of accuracy, with
ξ = limn→∞ xn for sequence (xn)n∈N defined by the recurrence relation

xn+1 = xn −
f(xn)

f ′(xn)
, x0 ∈ I, (1.14)

where x0 is a point chosen “near” the zero ξ.
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We seek conditions that are sufficient to ensure that the method will indeed converge to ξ.
First we express the sequence (1.14) as xn+1 = K(xn) for

K(x) := x− f(x)

f ′(x)
,

so that (xn)n∈N may be written as (Kn(x0))n∈N. Provided that f ′(ξ) ̸= 0, we have K(ξ) =
ξ − f(ξ)/f ′(ξ) = ξ since f(ξ) = 0, and so ξ is a fixed point for K. Provided that f ′′ exists on
some closed interval I1 containing ξ in its interior, we find K to be differentiable on I1 with

K ′(x) =
f(x)f ′′(x)

[f ′(x)]2
.

Let I2 ⊆ I1 be a compact interval on which f ′′ is continuous and ξ ∈ Int(I2). Then f
′ and f

are also continuous on I2, and hence so too is K ′. Now, because K ′(ξ) = 0, there must exist
some compact interval I ⊆ I2 such that |K ′(x)| < 1 for all x ∈ I; indeed, by the extreme value
theorem there exists some θ ∈ [0, 1) such that |K ′(x)| ≤ θ for all x ∈ I. Therefore, since K
is continuous on I and differentiable on Int(I), Proposition 1.21 implies that K : I → R is a
contraction mapping on I.

Finally, because (R, |·|) is a Banach space and ∅ ̸= I ⊆ R is closed, the contraction principle
informs us that ξ is a unique fixed point for K on I, with

|Kn(x0)− ξ| ≤ θn

1− θ
|K(x0)− x0|

for all n ∈ N and any fixed x0 ∈ I. Since θn → 0 as n→ ∞, it follows by the squeeze theorem
that (Kn(x0))n∈N converges to ξ as desired.

We note that though the conditions imposed above are indeed sufficient to ensure the
Newton-Raphson method converges to the zero ξ for f , they are not altogether necessary.
Depending on the properties of the function f , the method may still find zeros for f even if, for
instance, I is not compact or f ′(ξ) = 0. ■

We now give a modest generalization of the contraction principle in which the hypothesis
that a mapping K is a contraction is replaced by a rather less strict condition.

Theorem 1.23 (Weissinger’s Theorem). Let (X, ∥·∥) be a Banach space and ∅ ̸= S ⊆ X
closed, and suppose K : S → S is such that, for convergent series

∑∞
n=1 θn,

∥Kn(x1)−Kn(x2)∥ ≤ θn∥x1 − x2∥ (1.15)

for all n ∈ N and x1, x2 ∈ S. Then K has a unique fixed point x∗ ∈ S, and moreover

∥Kn(x)− x∗∥ ≤

(
∞∑
j=n

θj

)
∥K(x)− x∥ (1.16)

for all n ∈ N and x ∈ S.

Proof. Clearly θn ≥ 0 for all n ∈ N, and since
∑
θj is convergent there exists ℓ ∈ N such that

θn ∈ [0, 1) for all n ≥ ℓ. Suppose x1, x2 ∈ S are fixed points for K. Then x1 and x2 are fixed
points for Kℓ, so that

∥x1 − x2∥ = ∥Kℓ(x1)−Kℓ(x2)∥ ≤ θℓ∥x1 − x2∥,
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and so if x1 ̸= x2 then the contradiction θℓ ≥ 1 results. Hence x1 = x2, thereby proving the
uniqueness of any fixed point that K may have in S.

Now fix x0 ∈ S, and define the sequence xn+1 = K(xn) for n ≥ 0. It can be shown by
induction that xn = Kn(x0), and with this we obtain

∥xn+1 − xn∥ = ∥Kn(x1)−Kn(x0)∥ ≤ θn∥x1 − x0∥ (1.17)

for n ∈ N. Thus for m > n we have, by the triangle inequality,

∥xm − xn∥ =

∥∥∥∥∥
m−1∑
j=n

(xj+1 − xj)

∥∥∥∥∥ ≤
m−1∑
j=n

∥xj+1 − xj∥ ≤

(
m−1∑
j=n

θj

)
∥x1 − x0∥,

and thus

∥Km(x0)−Kn(x0)∥ ≤

(
m−1∑
j=n

θj

)
∥K(x0)− x0∥ (1.18)

for m > n. If K(x0) = x0, then (Kn(x0))n∈N is a constant sequence and hence Cauchy in
S. Suppose K(x0) ̸= x0, and let ϵ > 0. Since

∑
θj converges there is some n ∈ N such that∑∞

j=n θj < ϵ/∥K(x0)− x0∥, and so by (1.18) we have

∥Km(x0)−Kn(x0)∥ ≤

(
m−1∑
j=n

θj

)
∥K(x0)− x0∥ ≤

(
∞∑
j=n

θj

)
∥K(x0)− x0∥ < ϵ (1.19)

for m > n. Again we conclude that (Kn(x0))n∈N is Cauchy in S, and so by Proposition 1.13
there exists x∗ ∈ S such that Kn(x0) → x∗. Letting m→ ∞ in (1.19), we find by Proposition
1.3 that

∥Kn(x0)− x∗∥ ≤

(
∞∑
j=n

θj

)
∥K(x0)− x0∥

for all n ∈ N. Because x0 ∈ S is arbitrary we will have verified the estimate (1.16) once it is
shown that x∗ is a fixed point for K.

From (1.17) and the observation that θn → 0, the squeeze theorem implies ∥xn+1 − xn∥ → 0.
Now, setting n = 1 in (1.15) makes clear that K is Lipschitz continuous on S, so K is continuous
on S by Proposition 1.18, and hence the fact that xn → x∗ implies xn+1 = K(xn) → K(x∗).
Now we have

0 = lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥K(xn)− xn∥ = ∥K(x∗)− x∗∥,

so that K(x∗) = x∗ and therefore x∗ ∈ S is a fixed point for K. ■

If K in Weissinger’s theorem were a contraction mapping with contraction constant θ, then
each θn in (1.15) would specifically become θn. However, because θn → 0 as n→ ∞, Weissinger’s
theorem implies that Kn is a contraction mapping on S for sufficiently large n.

The following proposition is notable in that requires neither Kn to be a contraction mapping
nor (X, ∥·∥) to be complete.

Proposition 1.24. Given a function K : (X, ∥·∥) → (X, ∥·∥), if Kn has unique fixed point x∗

for some n ∈ N, then K also has unique fixed point x∗.
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Proof. Suppose Kn has unique fixed point x∗ for some n ≥ 1, so that Kn(x∗) = x∗. If
n = 1 then there is nothing to prove since K1 = K, so assume that n ≥ 2. Now, using the
commutativity of the function composition operation, we have

Kn(K(x∗)) = K(Kn(x∗)) = K(x∗),

which shows K(x∗) to be a fixed point for Kn, and therefore K(x∗) = x∗ since x∗ is given to be
a unique fixed point for Kn.

Now suppose that x̂ is a fixed point for f , so K(x̂) = x̂. Then x̂ must be a fixed point for
Kn since

Kn(x̂) = Kj−1(K(x̂)) = Kk−1(x̂)

for any j ≥ 1, and so

Kn(x̂) = Kn−1(x̂) = Kn−2(x̂) = · · · = K1(x̂) = K(x̂) = x̂.

We conclude that x̂ = x∗ by the uniqueness of x∗ as a fixed point for Kn, and therefore x∗ is a
unique fixed point for K also. ■

Theorem 1.20 and Proposition 1.24 taken together deliver a result that is modestly stronger
than the contraction principle alone, insofar as we may dispense with the latter’s requirement
that the mapping K : S → S be itself a contraction. Specifically we have the following.

Theorem 1.25. Let (X, ∥·∥) be a Banach space and ∅ ̸= S ⊆ X closed, and suppose K : S → S
is such that Kn is a contraction mapping for some n ∈ N. Then K has a unique fixed point in
S.

Proof. Since Kn is a contraction mapping on the closed set S, the contraction principle implies
that Kn possesses a unique fixed point x∗ in S. By Proposition 1.24 it follows that x∗ is also
the unique fixed point for K on S. ■
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1.4 – The Picard-Lindelöf Theorem

Given an open set U ⊆ Rn+2 and F ∈ C(U), an ordinary differential equation (ODE) is
an equation of the form

F
(
t, x, x(1), . . . , x(n)

)
= 0, (1.20)

where x ∈ Cn(S) for some S ⊆ R, and

x(k)(t) :=
dkx

dtk
(t)

for each 0 ≤ k ≤ n (so x(0) := x in particular). We say (1.20) is an nth-order ODE to convey
that the highest-order derivative of the dependent variable x in the equation is order n. Given
an interval I ⊆ S, we say φ ∈ Cn(I) is a solution to (1.20) on I if, for all t ∈ I, we have
(t, φ(t), φ(1)(t), . . . , φ(n)(t)) ∈ U such that

F
(
t, φ(t), φ(1)(t), . . . , φ(n)(t)

)
= 0.

Unless otherwise indicated, all derivatives are considered to be two-sided, including at any
endpoints of I!

We are particularly interested in nth-order ODEs for which x(n) may be isolated on one side
of the equation, thereby obtaining an explicit nth-order ODE having the form

x(n) = f
(
t, x, x(1), . . . , x(n−1)

)
.

An explicit first-order ODE thus has the form dx/dt = f(t, x). However, as t is naturally
thought of as denoting time, we shall employ the dot notation ẋ := dx/dt that customarily
denotes differentiation with respect to time, and so write the first-order ODE as ẋ = f(t, x).
If x(t) and f(t, x) are vector-valued functions, then ẋ = f(t, x) in fact represents a system of
explicit first-order ODEs. Much of the remainder of this chapter will be occupied with the
business of developing many theoretical results concerning such systems.

Letting

x(t) := (x1(t), . . . , xn(t)) := (xk(t))
n
k=1,

where each xk is a real-valued function, in this section we state and prove our first existence-
uniqueness theorem for a first-order initial-value problem (IVP) of the form

ẋ = f(t, x), x(t0) = x0, (1.21)

assuming that f ∈ C(U,Rn) for some open set U ⊆ Rn+1, with (t0, x0) ∈ U . If n ≥ 2 then
ẋ = f(t, x) is a vector equation that amounts to a system of at least two first-order ordinary
differential equations.

Given a function φ : S ⊆ R → Rn, the symbol Γφ(S) denotes the graph of φ on S; that is,

Γφ(S) :=
{
(t, φ(t)) : t ∈ S

}
,

which lies in Rn+1.
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Proposition 1.26. Suppose f(t, x) = (fk(t, x))
n
k=1 is continuous on an open set U ⊆ Rn+1,

(t0, x0) ∈ U , I is an interval containing t0, and φ : I → Rn is such that Γφ(I) ⊆ U . Then φ(t)
is a solution to the IVP (1.21) on I if and only if it is a solution to

x(t) = x0 +

∫ t

t0

f(s, x(s))ds (1.22)

on I.

Proof. Suppose φ(t) := (φk(t))
n
k=1 is a solution to (1.21) on I, so that φ̇(t) = f(t, φ(t)) for all

t ∈ I and φ(t0) = x0. Since integration of a vector-valued function is carried out componentwise,
by the fundamental theorem of calculus we have

x0 +

∫ t

t0

f(s, φ(s))ds = x0 +

∫ t

t0

φ̇(s)ds = x0 +

(∫ t

t0

φ̇k(s)ds

)n
k=1

= x0 +
(
φk(t)− φk(t0)

)n
k=1

= x0 +
(
φk(t)

)n
k=1

−
(
φk(t0)

)n
k=1

= x0 + φ(t)− φ(t0) = φ(t)

for each t ∈ I, and thus φ satisfies (1.22) on I.
Next suppose φ is a solution to (1.22) on I; that is,

φ(t) = x0 +

∫ t

t0

f(s, φ(s))ds (1.23)

for all t ∈ I. For each t ∈ I the closed interval J with endpoints t0 and t is a subset of I, so
that Γφ(J) ⊆ Γφ(I) ⊆ U , and thus the integrand s 7→ f(s, φ(s)) in (1.23) is continuous over the
interval of integration. From this it follows that the components of f(s, φ(s)) are themselves
continuous over the interval of integration, thereby assuring the existence of the integral in
(1.23), and so

φ̇(t) =
d

dt

∫ t

t0

f(s, φ(s))ds =

(
d

dt

∫ t

t0

fk(s, φ(s))ds

)n
k=1

=
(
fk(t, φ(t))

)n
k=1

= f(t, φ(t))

for all t ∈ I by the fundamental theorem of calculus, with

φ(t0) = x0 +

∫ t0

t0

f(s, φ(s))ds = x0.

Therefore φ satisfies (1.21) on I. ■

With t0 as in (1.21) and some suitable T > 0 let IT := [t0 − T, t0 + T ]. To prove an
existence-uniqueness theorem for the initial-value problem (1.21) with f ∈ C(U,Rn), where
U ⊆ Rn+1 is open, we start by defining an operator K with domain some suitable subset of the
normed vector space (C(IT ,Rn), ∥·∥∞) by

K[φ](t) = x0 +

∫ t

t0

f(s, φ(s))ds; (1.24)

that is, for each suitable φ ∈ C(IT ,Rn), K[φ] is the function given by (1.24). Proposition 1.11
provides assurance that (C(IT ,Rn), ∥·∥∞) is a Banach space so long as T < ∞, but for any
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T > 0 is may be possible to find some φ ∈ C(IT ,Rn) such that (t, φ(t)) /∈ U for some t ∈ IT . As
f in (1.24) is only given to be continuous on U , it becomes clear that certain restrictions must
be placed on our choice for either T or φ, and as it turns out, restrictions must be imposed on
both. Indeed, in addition to the foregoing considerations, we seek some T0 > 0 and closed set
S ⊆ (C(IT0 ,Rn), ∥·∥∞) such that K maps S into S and also K is a contraction on S. Before
stating a lemma to address some of these matters, however, we need a definition.

Given normed vector spaces (X, ∥·∥X), (Y, ∥·∥Y ), (Z, ∥·∥Z), with W ⊆ X × Y , a function
F (x, y) that maps W into Z is said to be Lipschitz continuous in the second argument,
uniformly with respect to the first argument on W if there exists a constant θ ∈ [0,∞)
such that

∥F (x, y1)− F (x, y2)∥Z ≤ θ∥y1 − y2∥Y
for all (x, y1), (x, y2) ∈ W . We say F : W → Z is locally Lipschitz continuous in the
second argument, uniformly with respect to the first argument on W if at each point
(x, y) ∈ W there is an open set O containing (x, y) such that F is Lipschitz continuous in the
second argument, uniformly with respect to the first argument on O ∩W . If X, Y , and Z are
subsets of Euclidean spaces, then Proposition 1.17 may be used to show that if F is locally
Lipschitz continuous in the second argument, uniformly with respect to the first argument on
W , then F is Lipschitz continuous in the second argument, uniformly with respect to the first
argument on any compact set C such that C ⊆ W .

Lemma 1.27. Let U ⊆ Rn+1 be open with (t0, x0) ∈ U , and suppose T, δ > 0 are such that
V := IT ×Bδ(x0) ⊆ U . For f ∈ C(U,Rn) continuous on U , set

M = sup
(t,x)∈V

|f(t, x)|,

and define T0 = min{T, δ/M}, with T0 = T if M = 0. Also define

S =
{
φ ∈ C(IT0 ,Rn) : ∥φ− x0∥∞ ≤ δ

}
,

where ∥φ∥∞ := sup{|φ(t)| : t ∈ IT0}.

1. Let V0 = IT0 ×Bδ(x0). If φ ∈ S, then Γφ(IT0) ⊆ V0 ⊆ V .

2. S is closed.

3. K : S → S.

4. Suppose f is Lipschitz continuous in the second argument, uniformly with respect to the first
argument on V0, with Lipschitz constant L. If T0 < 1/L, then K is a contraction on S.

Proof.
Proof of (1). Fix φ ∈ S, so φ : IT0 → Rn is such that ∥φ− x0∥∞ ≤ δ. Then for all t ∈ IT0 we
have |φ(t)− x0| ≤ δ, so that

φ(t) ∈ Bδ(x0) = {x ∈ Rn : |x− x0| ≤ δ},

and therefore (t, φ(t)) ∈ V0.

Proof of (2). Let (ψk)k∈N be a Cauchy sequence in S, so ψk ∈ C(IT0 ,Rn) is such that Γψk
(IT0) ⊆ V0

for each k by part (1). Now, because (ψk) is also a Cauchy sequence in (C(IT0 ,Rn), ∥·∥∞), which
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is complete by Proposition 1.11, there exists ψ ∈ C(IT0 ,Rn) such that, with respect to the sup
norm ∥·∥∞, ψk → ψ as k → ∞. All that remains is to demonstrate that ∥ψ − x0∥∞ ≤ δ.

The sequence (ψk) certainly converges pointwise to ψ; that is, for each t ∈ IT0 we have
ψk(t) → ψ(t) as k → ∞, and thus (t, ψk(t))k∈N is a sequence in V0 that converges to (t, ψ(t)).
But V0 is a closed set, implying that (t, ψ(t)) ∈ V0 for each t ∈ IT0 , or equivalently Γψ(IT0) ⊆ V0,
which in turn leads to φ(IT0) ⊆ Bδ(x0), and finally ∥φ− x0∥∞ ≤ δ. Therefore ψ ∈ S, and S is
closed by Proposition 1.13.

Proof of (3). Fix φ ∈ S and t ∈ IT0 , the latter implying that |t− t0| ≤ T0. We have

|K[φ](t)− x0| =
∣∣∣∣∫ t

t0

f(s, φ(s))ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

t0

∣∣f(s, φ(s))∣∣ds∣∣∣∣
≤
∣∣∣∣∫ t

t0

M

∣∣∣∣ =M |t− t0| ≤MT0 ≤M · δ
M

= δ,

(1.25)

and thus

∥K[φ]− x0∥∞ = sup
t∈IT0

|K[φ](t)− x0| ≤ δ.

It remains to show that K[φ] : IT0 → Rn is continuous. For any t1, t2 ∈ IT0 we have

|K[φ](t1)−K[φ](t2)| =
∣∣∣∣∫ t2

t1

f(s, φ(s))ds

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

∣∣f(s, φ(s))∣∣ds∣∣∣∣ ≤M |t1 − t2|, (1.26)

so that K[φ] is Lipschitz continuous on IT0 , and hence continuous on IT0 by Proposition 1.18.
Therefore K[φ] ∈ S.

Proof of (4). Fix φ, ψ ∈ S. Now, for any t ∈ IT0 ,

|K[φ](t)−K[φ](t)| =
∣∣∣∣∫ t

t0

[
f(s, φ(s))− f(s, ψ(s))

]
ds

∣∣∣∣
≤
∣∣∣∣∫ t

t0

∣∣f(s, φ(s))− f(s, ψ(s))
∣∣ds∣∣∣∣

≤
∣∣∣∣∫ t

t0

L|φ(s)− ψ(s)|ds
∣∣∣∣

≤ L|t− t0|∥φ− ψ∥∞ ≤ LT0∥φ− ψ∥∞,

so that ∥K[φ]−K[ψ]∥∞ ≤ LT0∥φ− ψ∥∞. Thus if T0 < 1/L it follows that K is a contraction
on S. ■

We observe that M <∞ in the lemma since f is given to be continuous on the compact set
V0, and thus T0 > 0 is assured.

In light of the contraction principle, the motivation for working with the operator (1.24)
to demonstrate the uniqueness of a solution to (1.21) is perhaps made more manifest by the
following proposition.
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Proposition 1.28. Let f ∈ C(U,Rn) for open U ⊆ Rn+1 with (t0, x0) ∈ U , let I be any interval
containing t0, and suppose φ : I → Rn is such that Γφ(I) ⊆ U . Then φ satisfies the IVP (1.21)
on I if and only if K[φ] ≡ φ on I.

Proof. Comparing (1.22) with (1.24), we see that Proposition 1.28 is an immediate consequence
of Proposition 1.26. ■

Broadly speaking, any solution to the initial-value problem (1.21) is a fixed point for the
operator K as defined by (1.24).

For the statement of the Picard-Lindelöf theorem that is the centerpiece of the present
section we introduce some notational conventions. For U ⊆ Rm and V ⊆ Rn, we denote by
Ck(U, V ) the collection of all functions F : U → V that have continuous partial derivatives of
order up to and including k on U . With C0(U, V ) := C(U, V ) and C∞(U, V ) :=

⋂∞
k=0 Ck(U, V ),

it is clear that

C∞(U, V ) ⊆ Ck+1(U, V ) ⊆ Ck(U, V ) ⊆ C(U, V )

for all k ≥ 0. Since V = R quite frequently, we further define Ck(U) = C(U,R) for 0 ≤ k ≤ ∞.
If U ⊆ R, then of course all partial derivatives become ordinary derivatives. Differentiation of
vector-valued functions is performed componentwise as usual.

In order to fully and honestly prove the Picard-Lindelöf theorem we shall need the following
mean value theorem for vector-valued functions: if h ∈ C([a, b],Rn) ∩ C1((a, b),Rn), then there
exists t ∈ (a, b) such that

|h(b)− h(a)| ≤ (b− a)|h′(t)|.

Theorem 1.29 (Picard-Lindelöf). Let U ⊆ Rn+1 be open, with (t0, x0) ∈ U and T, δ > 0 such
that V := IT ×Bδ(x0) ⊆ U . Suppose f ∈ C(U,Rn) is locally Lipschitz continuous in the second
argument, uniformly with respect to the first argument on U ,

M = sup
(t,x)∈V

|f(t, x)|,

and T0 = min{T, δ/M}. For V0 := IT0 × Bδ(x0), if L is a Lipschitz constant for f on V0
and T0 < 1/L, then the IVP (1.21) has a unique solution x∗ ∈ C1(IT0 ,Rn), and moreover this
solution is such that Γx∗(IT0) ⊆ V0.

Proof. Suppose L is a Lipschitz constant for f on V0 and T0 < 1/L. The mapping K : S → S
is a contraction on the closed set S by Lemma 1.27, and since C(IT0 ,Rn) is a Banach space by
Proposition 1.11, the contraction principle implies there exists a unique fixed point x∗ ∈ S for
K. Now, Γx∗(IT0) ⊆ V0 ⊆ U by Lemma 1.27, and since x∗ : IT0 → Rn is such that K[x∗] ≡ x∗

on IT0 , by Proposition 1.28 we find x∗ to be a solution to (1.21) on IT0 , with x
∗ ∈ C1(IT0 ,Rn)

since f is continuous and ẋ∗(t) = f(t, x∗(t)) for all t ∈ IT0 . This proves the existence in S of a
solution to the IVP.

Next suppose that φ ∈ S satisfies the IVP on IT0 . Then K[φ] ≡ φ on IT0 by Proposition
1.28, so that φ is a fixed point for K : S → S, and therefore φ = x∗ by the uniqueness of x∗ as
a fixed point for K in S. This proves the uniqueness in S of a solution to the IVP.
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It remains to show that there can exist no function φ : IT0 → Rn that lies outside of S
for which Γφ(IT0) ⊆ U and φ satisfies the IVP.4 First we show that Γx∗(Int(IT0)) ⊆ Int(V0).
Suppose there exists τ ∈ [t0, t0 + T0) such that |x∗(τ)− x0| = δ, where τ > t0 since x∗(t0) = x0.
By the mean value theorem there is some τ̂ ∈ (t0, τ) such that

|ẋ∗(τ̂)| ≥ |x∗(τ)− x∗(t0)|
τ − t0

=
|x∗(τ)− x0|
τ − t0

,

and so, since x∗ satisfies (1.21) and T0 ≤ δ/M ,∣∣f(τ̂ , x∗(τ̂))∣∣ = |ẋ∗(τ̂)| ≥ δ

τ − t0
>

δ

T0
≥M. (1.27)

However, (τ̂ , x∗(τ̂)) ∈ V0 since x∗ ∈ S, so that |f(τ̂ , x∗(τ̂))| ≤M . This contradicts (1.27), and
hence |x∗(t)− x0| < δ for all t ∈ [t0, t0 + T0). This also holds for t ∈ (t0 − T0, t0], and therefore
|x∗(t)− x0| < δ for all t ∈ Int(IT0).

Now suppose φ : IT0 → Rn is such that Γφ(IT0) ⊆ U and φ satisfies (1.21) on IT0 , but φ /∈ S.
Being a solution to the IVP certainly requires φ ∈ C(IT0 ,Rn), so for h : IT0 → R given by
h(t) = |φ(t)− x0| there exists t̂ ∈ IT0 such that h(t̂) > δ. For the sake of argument we assume
t̂ ∈ I+T0 := [t0, t0 + T0]. Because h(t0) = 0, the intermediate value theorem implies h(t) = δ for

at least one value of t between t0 and t̂. Define

T1 = min{t > 0 : h(t0 + t) = δ}, (1.28)

so that t0 < t0 + T1 < t̂ ≤ t0 + T0; also define I = [t0, t0 + T1]. Since K[φ] ≡ φ and K[x∗] ≡ x∗

on IT0 by Proposition 1.28, the same identities hold on I; however, because I ⊆ Int(IT0) we
have |x∗(t)− x0| < δ for all t ∈ I, whereas |φ(t0 + T1)− x0| = δ, and hence φ /≡x∗ on I.

For ∥ψ∥I := supt∈I |ψ(t)|, define

S ′ = {ψ ∈ C(I,Rn) : ∥ψ − x0∥I ≤ δ},

which is a closed subset of C(I,Rn) by much the same argument that proved part (3) of Lemma
1.27. Certainly x∗ ∈ S ′, so that S ′ ̸= ∅. Also from (1.28) it’s apparent that |φ(t)− x0| ≤ δ for
t ∈ I, so that Γφ(I) ⊆ I ×Bδ(x0), and hence φ ∈ S ′ as well. We also have K : S ′ → S ′. To see
this, fix ψ ∈ S ′ and t ∈ I; then, noting that Γψ(I) ⊆ V , the find from

|K[ψ](t)− x0| ≤
∫ t

t0

|f(s, ψ(s))|ds ≤
∫ t

t0

Mds ≤MT0 ≤ δ

that ∥K[ψ]− x0∥I ≤ δ, and the argument that K[ψ] ∈ C(I,Rn) is largely the same as (1.26).
Finally, K is a contraction on S ′, since for any ψ1, ψ2 ∈ S ′ and t ∈ I we have5

|K[ψ1](t)−K[ψ2](t)| ≤
∫ t

t0

L|ψ1(s)− ψ2(s)|ds ≤ LT1∥ψ1 − ψ2∥I ,

so that ∥K[ψ1]−K[ψ2]∥I ≤ θ∥ψ1 −ψ2∥I for θ = LT1 ≤ LT0 < 1. The contraction principle now
informs us that K : S ′ → S ′ has a unique fixed point in S ′, whereas we have already discovered

4Curiously a significant number of ODE textbooks, both elementary and advanced, wholly ignore this apparent
possibility.

5Compare with the proof of part (4) of Lemma 1.27.
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that x∗, φ ∈ S ′ are distinct fixed points for K. As this is a contradiction, we conclude that any
solution to the IVP on IT0 must lie in S. ■

It is generally desirable to secure the largest interval of validity possible for any solution
to an initial-value problem. When applying the Picard-Lindelöf theorem this translates into
determining the largest T0 that satisfies the theorem’s hypotheses. Since the theorem requires
that T0 < 1/L, we therefore wish to find the smallest Lipschitz constant L for f on V0, which
will be

L0 := sup
(t,x)̸=(t,y)∈V0

|f(t, x)− f(t, y)|
|x− y|

. (1.29)

Certainly for all (t, x) ̸= (t, y) in V0 the equation (1.29) implies that

|f(t, x)− f(t, y)| ≤ L0|x− y|, (1.30)

and since (1.30) is trivially true whenever (t, x) = (t, y), we see that L0 indeed qualifies as a
Lipschitz constant for f on V0.

Another possible means of extending an interval of validity I for a solution to the IVP (1.21)
is to not contrive to have I be centered at t0. Depending on the nature of f it may be possible
to have I = [t0 − T ′

0, t0 + T0] for T
′
0 ̸= T0. For this small loss of symmetry we may find we can

satisfy the hypotheses of Theorem 1.29 on a longer interval to one side of t0 than on the other
side; that is, the Picard-Lindelöf theorem may be applied to intervals of the form [t0 − T, t0]
and [t0, t0 + T ] separately for different values of T that give rise to different values of T0.

If f in (1.21) happens to be of class C1, which is to say f ∈ C1(U,Rn), then it turns out that
f is locally Lipschitz continuous in the second argument, uniformly with respect to the first
argument. Another proposition will be necessary in order to prove this, but there are some
preliminaries to dispense with. First, a subset C of a vector space is convex if, for any x, y ∈ C,
the line segment

[x, y] :=
{
(1− t)x+ ty : t ∈ [0, 1]

}
whose endpoints are x and y is a subset of C. Next, given a field F ∈ {R,C}, the Frobenius
norm of a matrix A ∈ Fm×n is defined to be

|A| =
n∑
j=1

m∑
i=1

|aij|,

where aij denotes the ij-entry of A.

Proposition 1.30. For U ⊆ Rn open, suppose F ∈ C1(U,Rm). If C ⊆ U is compact and convex,
then F is Lipschitz continuous on C with Lipschitz constant supx∈C |[dF (x)]|.

Proof. Suppose C ⊆ U is both compact and convex. The first-order partial derivatives of F
being continuous on U by hypothesis, Proposition 1.14 implies F is differentiable on U , so that
the mapping (U, |·|) → (Rm×n, |·|) given by

x 7→ [dF (x)] :=

[
∂Fi
∂xj

(x)

]
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for each x ∈ U is continuous on U , and hence bounded on C with respect to the Frobenius
norm. Let

M = sup
x∈C

∣∣[dF (x)]∣∣,
and fix a, b ∈ C. Then [a, b] ⊆ C since C is convex. Defining h : [0, 1] → C by h(t) = (1−t)a+tb,
we apply the fundamental theorem of calculus to each of the m components of F to obtain∫ 1

0

(F ◦ h)′(t)dt = (F ◦ h)(1)− (F ◦ h)(0) = F (b)− F (a). (1.31)

Now, because h is continuous, h([0, 1]) ⊆ C, and C ⊆ U is closed, there exists an open
interval I ⊇ [0, 1] such that h : I → U , whereupon F ◦ h : I → Rm. Equation (1.7) makes clear
that dh(t) : R → Rn exists for each t ∈ I, and if h1, . . . , hn are the components of h, then

[dh(t)] =

h′1(t)...
h′n(t)

= h′(t) = b− a.

Similarly we have [d(F ◦ h)(t)] = (F ◦ h)′(t) for t ∈ I. In terms of their standard matrices, the
linear map dF (h(t)) : Rn → Rm is an m × n matrix and dh(t) : R → Rn is an n × 1 matrix,
and thus

(F ◦ h)′(t) = [d(F ◦ h)(t)] = [dF (h(t))][dh(t)] = [dF (h(t))]h′(t) = [dF (h(t))](b− a)

by the remark following the total derivative chain rule of Theorem 1.15. From (1.31) we now
obtain

F (b)− F (a) =

∫ 1

0

[dF (h(t))](b− a)dt.

Finally, using a property of the Frobenius norm which holds that |AB| ≤ |A||B| for any matrices
A and B for which the product AB is defined,

|F (b)− F (a)| ≤
∫ 1

0

∣∣[dF (h(t))](b− a)
∣∣dt ≤ ∫ 1

0

∣∣[dF (h(t))]∣∣|b− a|dt

≤
∫ 1

0

M |b− a|dt =M |b− a| =
(
sup
x∈C

∣∣[dF (x)]∣∣)|b− a|,

finishing the proof. ■

Corollary 1.31. If U ⊆ Rn is open and F ∈ C1(U,Rm), then F is locally Lipschitz continuous
on U .

Proof. Suppose U ⊆ Rn is open and F ∈ C1(U,Rm). For any x ∈ U there exists δ > 0 such
that B2δ(x) ⊆ U , and hence Bδ(x) ⊆ U . Now, since the closed ball Bδ(x) is both compact and
convex, Proposition 1.30 implies that F is Lipschitz continuous on Bδ(x), and hence on the
open ball Bδ(x). ■
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1.5 – Other Existence-Uniqueness Theorems

Given normed vector spaces (X, ∥·∥X), (Y, ∥·∥Y ), (Z, ∥·∥Z), let W ⊆ X × Y , and for each
x ∈ X let

Wx := {y ∈ Y : (x, y) ∈ W}.

A function F (x, y) that maps W into Z is said to be Lipschitz continuous in the second
argument on W if, for each fixed x ∈ X for which Wx ̸= ∅, the function F (x, ·) : Wx → Z is
Lipschitz continuous on Wx; that is, for each x ∈ X there exists a constant θx ∈ [0,∞) such
that

∥F (x, y1)− F (x, y2)∥Z ≤ θx∥y1 − y2∥Y

for all y1, y2 ∈ Wx. We say F : W → Z is locally Lipschitz continuous in the second
argument on W if F (x, ·) : Wx → Z is locally Lipschitz continuous on Wx for each x ∈ X
for which Wx ̸= ∅. If X, Y , and Z represent Euclidean spaces (or subsets of same), then
Proposition 1.17 informs us that whenever F is given to be locally Lipschitz continuous in the
second argument on W , then for each x ∈ X the function F (x, ·) is Lipschitz continuous on
compact subsets of Wx.

We start with the statement and proof of a local existence-uniqueness theorem for the
initial-value problem

ẋ = f(t, x), x(t0) = x0, (1.32)

that dispenses with the Picard-Lindelöf theorem’s requirement that T0 < 1/L, and relaxes other
conditions. For instance the hypothesis of Theorem 1.29 that f ∈ C(U,Rn) be locally Lipschitz
continuous in the second argument, uniformly with respect to the first argument on U will be
weakened to local Lipschitz continuity in the second argument on U . Another way in which the
following theorem contrasts with Theorem 1.29 is it restricts the time interval on which the
unique solution to (1.32) exists to [t0, t0 + T0]. There exists an analogous result which considers
t < t0. We let I+T := [t0, t0 + T ] for T > 0.

Theorem 1.32. Let U ⊆ Rn+1 be open, with (t0, x0) ∈ U and T, δ > 0 such that I+T ×Bδ(x0) ⊆ U .
Suppose f ∈ C(U,Rn) is locally Lipschitz continuous in the second argument on U , define

M(t) =

∫ t

t0

(
sup

x∈Bδ(x0)

|f(s, x)|
)
ds

and

L(t) = sup
x1 ̸=x2∈Bδ(x0)

|f(t, x1)− f(t, x2)|
|x1 − x2|

for t ∈ I+T , and assume

λ :=

∫ t0+T0

t0

L(t)dt <∞

for

T0 := sup{t : t0 + t ∈ I+T and M(t0 + t) ≤ δ}.
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Then there is a unique solution x∗ ∈ C1(I+T0 , Bδ(x0)) for the IVP (1.32), with

sup
t∈I+T0

∣∣Km[x0](t)− x∗(t)
∣∣ ≤ λmeλ

m!

∫ t0+T0

t0

|f(s, x0)|ds (1.33)

for all m ∈ N, and thus Km[x0]−→u x∗ on I+T0.

Proof. The normed vector space (C(I+T0 ,R
n), ∥·∥∞) is a Banach space by Proposition 1.11, and

S :=
{
φ ∈ C(I+T0 ,R

n) : ∥φ− x0∥∞ ≤ δ
}

is a closed subset by the same argument as in the proof of Lemma 1.27.6 Now, for any φ ∈ S
and t ∈ I+T0 we have φ(t) ∈ Bδ(x0), and so

|K[φ](t)− x0| ≤
∫ t

t0

|f(s, φ(s))|ds ≤M(t) ≤ δ

by the definition of T0 and the fact that M : I+T0 → R is a monotone increasing function. Hence

∥K[φ] − x0∥∞ ≤ δ, and the calculation (1.26) for t1, t2 ∈ I+T0 shows that K[φ] : I+T0 → Rn is
continuous and therefore K : S → S.

Define

ℓ(t) =

∫ t

t0

L(s)ds,

where ℓ : I+T0 → R since ℓ(t) ≤ λ <∞ for all t ∈ I+T0 . It can be shown by induction that

∀m ∈ N

[
∀φ, ψ ∈ S ∀t ∈ I+T0

(
|Km[φ](t)−Km[ψ](t)| ≤ ℓm(t)

m!
sup
r∈[t0,t]

|φ(r)− ψ(r)|

)]
, (1.34)

and thus

∥Km[φ]−Km[ψ]∥∞ ≤ λm

m!
∥φ− ψ∥∞.

Observing that
∑∞

m=1 λ
m/m! < ∞, Theorem 1.23 implies that K has a unique fixed point

x∗ ∈ S such that

∥Km[φ]− x∗∥∞ ≤

(
∞∑
j=m

λj

j!

)
∥K[φ]− φ∥∞ (1.35)

for all m ∈ N and φ ∈ S. Since the constant function x0 is in S, we may substitute it for φ in
(1.35) to obtain

∥Km[x0]− x∗∥∞ ≤

(
∞∑
j=m

λj

j!

)
∥K[x0]− x0∥∞. (1.36)

However, we find that

∥K[x0]− x0∥∞ = sup
t∈I+T0

|K[x0](t)− x0| ≤ sup
t∈I+T0

∫ t

t0

|f(s, x0)|ds ≤
∫ t0+T0

t0

|f(s, x0)|ds (1.37)

6We refrain from citing Lemma 1.27 itself since technically that lemma has a different definition for T0 than
the present setting.
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and
∞∑
j=m

λj

j!
=

∞∑
j=0

λj+m

(j +m)!
≤

∞∑
j=0

λj+m

j!m!
=
λm

m!

∞∑
j=0

λj

j!
=
λmeλ

m!
, (1.38)

and the inequalities (1.36), (1.37), and (1.38) taken together yield (1.33). Because x∗ ∈ S it is
clear that Γx∗(I

+
T0
) ⊆ I+T ×Bδ(x0) ⊆ U , and thus by Proposition 1.28 we conclude that x∗ is a

solution to the IVP (1.32) on I+T0 , with uniqueness assured by the uniqueness of x∗ as a fixed
point for K in S.

The proof is done once we attend to the detail of affirming the veracity of (1.34) by an
inductive argument. The fact that

|f(t, x1)− f(t, x2)| ≤ L(t)|x1 − x2| (1.39)

for each t ∈ I+T0 and x1, x2 ∈ Bδ(x0) implies

|K[φ](t)−K[ψ](t)| ≤
∫ t

t0

∣∣f(s, φ(s))− f(s, ψ(s))
∣∣ds ≤ ∫ t

t0

L(s)|φ(s)− ψ(s)|ds

≤
∫ t

t0

L(s) sup
r∈[t0,t]

|φ(r)− ψ(r)|ds = ℓ(t) sup
r∈[t0,t]

|φ(r)− ψ(r)|,

establishing the bracketed statement in (1.34) for m = 1. Now suppose that the bracketed
statement holds for some m ∈ N. Recalling (1.39) and observing that ℓ′(t) = L(t),

|Km+1[φ](t)−Km+1[ψ](t)| ≤
∫ t

t0

∣∣f(s,Km[φ](s))− f(s,Km[ψ](s))
∣∣ds

≤
∫ t

t0

L(s)|Km[φ](s)−Km[ψ](s)|ds

≤
∫ t

t0

L(s)
ℓm(s)

m!
sup
r∈[t0,s]

|φ(r)− ψ(r)|ds

≤ 1

m!
sup
r∈[t0,t]

|φ(r)− ψ(r)|
∫ t

t0

ℓ′(s)ℓm(s)ds. (1.40)

Applying integration by parts with u = ℓm(s) and v′ = ℓ′(s) yields∫ t

t0

ℓ′(s)ℓm(s)ds = ℓm+1(t)−m

∫ t

t0

ℓ′(s)ℓm(s)ds,

whence comes ∫ t

t0

ℓ′(s)ℓm(s)ds =
ℓm+1(t)

m+ 1
,

and so, returning to (1.40),

|Km+1[φ](t)−Km+1[ψ](t)| ≤ 1

m!
sup
r∈[t0,t]

|φ(r)− ψ(r)|ℓ
m+1(t)

m+ 1

=
ℓm+1(t)

(m+ 1)!
sup
r∈[t0,t]

|φ(r)− ψ(r)|,
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thereby affirming the bracketed statement in (1.34) for m replaced by m+ 1. This finishes the
proof. ■

The bound furnished by (1.33) on the error incurred when approximating the unique solution
x∗(t) to the IVP (1.32) using the functionKm[x0](t) makes clear thatKm[x0] converges uniformly
to x∗ on I+T0 . The process of finding Km[x0] for successive values of m ∈ N is known as Picard
iteration, with Km[x0] itself being the mth Picard iterate. From

Km[x0](t) = K
[
Km−1[x0]

]
(t) = x0 +

∫ t

t0

f(s,Km−1[x0](s))ds

we have
d

dt

(
Km[x0](t)

)
= f(t,Km−1[x0](t)),

which is continuous on I+T0 , and therefore Km[x0] ∈ C1(I+T0 , Bδ(x0)) for all m since K : S → S
implies Km : S → S.

For the sake of completeness we now state the counterpart to Theorem 1.32 that addresses
solutions to (1.32) for t < t0. The proof is of course quite similar. We let I−T := [t0 − T, t0] for
T > 0.

Theorem 1.33. Let U ⊆ Rn+1 be open, with (t0, x0) ∈ U and T, δ > 0 such that I−T ×Bδ(x0) ⊆ U .
Suppose f ∈ C(U,Rn) is locally Lipschitz continuous in the second argument on U , define

M(t) =

∫ t0

t

(
sup

x∈Bδ(x0)

|f(s, x)|
)
ds

and

L(t) = sup
x1 ̸=x2∈Bδ(x0)

|f(t, x1)− f(t, x2)|
|x1 − x2|

for t ∈ I−T , and assume

λ :=

∫ t0

t0−T1
L(t)dt <∞

for

T1 := sup{t : t0 − t ∈ I−T and M(t0 − t) ≤ δ}.
Then there is a unique solution x∗ ∈ C1(I−T1 , Bδ(x0)) for the IVP (1.32), with

sup
t∈I−T1

∣∣Km[x0](t)− x∗(t)
∣∣ ≤ λmeλ

m!

∫ t0

t0−T1
|f(s, x0)|ds

for all m ∈ N, and thus Km[x0]−→u x∗ on I−T1.

In general one can expect the T0 of Theorem 1.32 and the T1 of Theorem 1.33 to be different
values, and the two theorems taken together assure the existence of a unique solution to the
IVP (1.32) on the interval [t0 − T1, t0 + T0].
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Theorem 1.34. Let U = I × Rn for open interval I, with (t0, x0) ∈ U . If f ∈ C(U,Rn) is
Lipschitz continuous in the second argument on U , and T > t0 is such that I+T ⊆ I and

λ :=

∫ t0+T

t0

(
sup

x1 ̸=x2∈Rn

|f(t, x1)− f(t, x2)|
|x1 − x2|

)
dt <∞, (1.41)

then there is a unique solution x∗ ∈ C1(I+T ,Rn) to the IVP (1.32).

Proof. Let S = C(I+T ,Rn), which is a closed subset of the Banach space (C(I+T ,Rn), ∥·∥∞).
Fix φ ∈ S. The function t 7→ |f(t, φ(t))| is continuous on I+T , which is compact and so
α := supt∈I+T

|f(t, φ(t))| <∞ by the extreme value theorem. Then for any t1, t2 ∈ I+T ,

|K[φ](t1)−K[φ](t2)| =
∣∣∣∣∫ t2

t1

f(s, φ(s))ds

∣∣∣∣ ≤ ∣∣∣∣∫ t2

t1

∣∣f(s, φ(s))∣∣ds∣∣∣∣ ≤ α|t1 − t2|,

so that K[φ] is Lipschitz continuous on I+T , hence continuous on I+T by Proposition 1.18, and so
K : S → S.

For each t ∈ I+T define

L(t) = sup
x1 ̸=x2∈Rn

|f(t, x1)− f(t, x2)|
|x1 − x2|

, (1.42)

and in light of (1.41) define ℓ : I+T → [0, λ] by

ℓ(t) :=

∫ t

t0

L(s)ds.

Using (1.34) with I+T0 replaced by I+T , we have

∥Km[φ]−Km[ψ]∥∞ ≤ λm

m!
∥φ− ψ∥∞

for all φ, ψ ∈ S. Since
∑∞

m=1 λ
m/m! < ∞, Theorem 1.23 implies K has a unique fixed point

x∗ ∈ S such that (1.35) holds for all m ∈ N and φ ∈ S. The proof of Theorem 1.32 from (1.35)
onwards shows that the bound (1.33) applies in the present setting; however, we only need the
fact that x∗ : I+T → Rn possesses the property K[x∗] ≡ x∗ on I+T . Proposition 1.28 then implies
that x∗ is a solution to the IVP (1.32) on I+T , with uniqueness assured by the uniqueness of x∗

as a fixed point for K in S. ■

Corollary 1.35. If f ∈ C(Rn+1,Rn) is Lipschitz continuous in the second argument on Rn+1,
and ∫ t0+T

t0−T
L(t)dt <∞

for all T > 0 and L(t) given by (1.42), then the IVP (1.32) has a unique solution x∗ ∈ C1(R,Rn).

Proof. We find by Theorem 1.34 together with the analogous result pertaining to [t0 − T, t0]
that the IVP has a unique solution x∗ ∈ C1([t0 − T, t0 + T ],Rn) for each T > 0, and thus
x∗ ∈ C1(R,Rn). The bound (1.33), which applies to the setting of Theorem 1.34, makes clear
that if I, J ⊆ R are intervals containing t0, with φ the unique solution to the IVP on I and ψ
the unique solution to the IVP on J , then ψ|J ≡ φ. ■
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1.6 – Dependence on Initial Conditions

We now make a study of how the solution to the initial-value problem (1.32) depends on
the initial condition x(t0) = x0. Specifically, what are the bounds on the change in the solution
to the IVP when the point (t0, x0) is changed? Essential to the development of the theory is
Grönwall’s inequality, of which there are many variants, but the version that follows will suffice.
As ever we define I+T = [t0, t0 + T ] for 0 < T <∞.

Proposition 1.36 (Grönwall’s Inequality). Suppose u, α, β ∈ C(I+T ) with β ≥ 0 on I+T . If

u(t) ≤ α(t) +

∫ t

t0

β(s)u(s)ds (1.43)

for all t ∈ I+T , then

u(t) ≤ α(t) +

∫ t

t0

α(s)β(s) exp

(∫ t

s

β(r) dr

)
ds (1.44)

for all t ∈ I+T .

Proof. Define φ : I+T → [0,∞) by

φ(t) = exp

(
−
∫ t

t0

β(s)ds

)
,

so φ̇(t) = −β(t)φ(t). Now, supposing (1.43) to be the case, we find for any t ∈ I+T that

d

dt

(
φ(t)

∫ t

t0

β(s)u(s)ds

)
= φ(t)β(t)u(t)− φ(t)β(t)

∫ t

t0

β(s)u(s)ds

= φ(t)β(t)

(
u(t)−

∫ t

t0

β(s)u(s)ds

)
≤ φ(t)β(t)α(t).

Thus for s ∈ [t0, t],

d

ds

(
φ(s)

∫ s

t0

β(r)u(r)dr

)
≤ α(s)β(s)φ(s),

and hence

φ(t)

∫ t

t0

β(r)u(r)dr =

∫ t

t0

[
d

ds

(
φ(s)

∫ s

t0

β(r)u(r)dr

)]
ds ≤

∫ t

t0

α(s)β(s)φ(s)ds.

Dividing by φ(t) then yields∫ t

t0

β(s)u(s)ds ≤
∫ t

t0

α(s)β(s)φ(s)

φ(t)
ds =

∫ t

t0

α(s)β(s) exp

(∫ t

s

β(r) dr

)
ds,

whereupon adding α(t) to both sides and making use of (1.43) once more leads to (1.44). ■
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Proposition 1.36 is still valid if the interval I+T is replaced by a non-compact interval I such
as [t0, T ) or [t0,∞). Also the continuity of α may be replaced by a weaker requirement that
the negative part of α (i.e. α− given by α−(t) = max{−α(t), 0}) is integrable on compact
subintervals of I.

Corollary 1.37. Suppose u, α, β ∈ C(I+T ) with β nonnegative and α nondecreasing on I+T . If
(1.43) holds for all t ∈ I+T , then

u(t) ≤ α(t) exp

(∫ t

t0

β(s)ds

)
for all t ∈ I+T .

Proof. Since α(t1) ≤ α(t2) whenever t1 ≤ t2, by Grönwall’s inequality we have

u(t) ≤ α(t) +

∫ t

t0

α(s)β(s) exp

(∫ t

s

β(r) dr

)
ds

≤ α(t) + α(t)

∫ t

t0

β(s) exp

(∫ t

s

β(r)dr

)
ds

= α(t)− α(t)

∫ t

t0

d

ds

[
exp

(∫ t

s

β(r)dr

)]
ds

= α(t) exp

(∫ t

t0

β(r)dr

)
for all t ∈ I+T . ■

Corollary 1.38. Fix α, γ ∈ R and β > 0. If u ∈ C(I+T ) is such that

u(t) ≤ α +

∫ t

t0

[βu(s) + γ]ds (1.45)

for all t ∈ I+T , then

u(t) ≤ α exp[β(t− t0)] +
γ

β

(
exp[β(t− t0)]− 1

)
(1.46)

for all t ∈ I+T .

Proof. From (1.45) we have

u(t) +
γ

β
≤
(
α +

γ

β

)
+

∫ t

t0

β

(
u(s) +

γ

β

)
ds

for all t ∈ I+T , so that

u(t) +
γ

β
≤
(
α +

γ

β

)
exp

(∫ t

t0

βds

)
=

(
α +

γ

β

)
exp[β(t− t0)]

by Corollary 1.37. The inequality (1.46) immediately follows. ■
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Theorem 1.39. Let U ⊆ Rn+1 be open, with (t0, x0), (t0, y0) ∈ U . Suppose f, g ∈ C(U,Rn),
with f locally Lipschitz continuous in the second argument, uniformly with respect to the first
argument on U . Suppose further that x(t) and y(t) satisfy the initial-value problems

ẋ = f(t, x), x(t0) = x0 and ẏ = g(t, y), y(t0) = y0 (1.47)

for t ∈ IT := [t0 − T, t0 + T ], respectively. For V ⊆ U a compact set with Γx(IT ),Γy(IT ) ⊆ V ,
let L > 0 be such that

|f(τ, ξ1)− f(τ, ξ2)| ≤ L|ξ1 − ξ2|
for all (τ, ξ1), (τ, ξ2) ∈ V , and let

M = sup
(τ,ξ)∈V

|f(τ, ξ)− g(τ, ξ)|.

Then

|x(t)− y(t)| ≤ |x0 − y0|eL|t−t0| +
M

L

(
eL|t−t0| − 1

)
for all t ∈ IT .

Proof. We carry out the proof only for t ∈ I+T , as the argument is essentially the same for
t ∈ [t0 − T, t0]. By Proposition 1.26,

x(t) =

∫ t

t0

f(s, x(s))ds and y(t) =

∫ t

t0

g(s, y(s))ds

for t ∈ I+T , and so

|x(t)− y(t)| =
∣∣∣∣(x0 − y0) +

∫ t

t0

[
f(s, x(s))− g(s, y(s))

]∣∣∣∣ ds
≤ |x0 − y0|+

∫ t

t0

∣∣f(s, x(s))− g(s, y(s))
∣∣ds

≤ |x0 − y0|+
∫ t

t0

∣∣f(s, x(s))− f(s, y(s))
∣∣ds+ ∫ t

t0

∣∣f(s, y(s))− g(s, y(s))
∣∣ds

≤ |x0 − y0|+
∫ t

t0

L|x(s)− y(s)|ds+
∫ t

t0

Mds.

Using Corollary 1.38 with u(t) = |x(t)− y(t)|, we finally obtain

|x(t)− y(t)| ≤ |x0 − y0|+
∫ t

t0

(
L|x(s)− y(s)|+M

)
ds

≤ |x0 − y0|eL|t−t0| +
M

L

(
eL|t−t0| − 1

)
,

where of course t− t0 = |t− t0| for t ∈ I+T . ■

Subject to assumptions that assure uniqueness, let φ(t, t0, x0) denote the solution to the
initial-value problem (1.32) on some interval containing t0. Keeping t0 fixed, suppose there exists
a closed interval I containing t0 such that, for all ξ sufficiently close to x0, the IVP ẋ = f(t, x),
x(t0) = ξ has a unique solution on I. Then the IVP (1.32) is well-posed if φ is continuous in
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the third argument at each t ∈ I. Thus there exists some α > 0 such that, for all ξ ∈ Rn for
which |ξ − x0| < α, the function t 7→ φ(t, t0, ξ) is a solution to the IVP

ẋ = f(t, x), x(t0) = ξ (1.48)

on I, and

lim
ξ→x0

φ(t, t0, ξ) = φ(t, t0, x0)

for each t ∈ I.
Substituting f for g in Theorem 1.39, we take x(t) and y(t) to be solutions on IT to the

initial-value problems

ẋ = f(t, x), x(t0) = x0 and ẏ = f(t, y), y(t0) = y0,

respectively. Assuming the hypotheses of the theorem hold, and noting that M = 0 when f = g,
the theorem concludes that

|x(t)− y(t)| ≤ |x0 − y0|eL|t−t0| (1.49)

for each t ∈ IT . Clearly

φ(t, t0, y0) = y(t) → x(t) = φ(t, t0, x0)

as y0 → x0, and hence the IVP (1.32) is well-posed provided solutions to (1.48) are valid on IT
for all ξ sufficiently close to x0. The next theorem has something to say about this last point.

Theorem 1.40. Let U ⊆ Rn+1 be open, and suppose f ∈ C(U,Rn) is locally Lipschitz continuous
in the second argument, uniformly with respect to the first argument. Fix (t0, x0) ∈ U .

1. There exists compact interval I and compact set B ⊆ Rn such that (t0, x0) ∈ I ×B ⊆ U , and
φ(t, τ, ξ) exists on I × I ×B. Thus for each τ ∈ I and ξ ∈ B the function φ(·, τ, ξ) : I → Rn

is a solution on I to the IVP

ẋ = f(t, x), x(τ) = ξ.

2. If V is a compact set such that I × φ(I × I ×B) ⊆ V ⊆ U ,

M := sup
(τ,ξ)∈V

|f(τ, ξ)|,

and L > 0 is such that

|f(τ, ξ1)− f(τ, ξ2)| ≤ L|ξ1 − ξ2|
for all (τ, ξ1), (τ, ξ2) ∈ V , then

|φ(t1, τ1, ξ1)− φ(t2, τ2, ξ2) ≤ |ξ1 − ξ2|eL|t1−τ1| +
(
|t1 − t2|+ |τ1 − τ2|eL|t1−τ2|

)
M (1.50)

for all (t1, τ1, ξ1), (t2, τ2, ξ2) ∈ I × I ×B.

3. φ(t, τ, ξ) ∈ C(I × I ×B,Rn).

Proof.
Proof of (1). Fixing (t0, x0) ∈ U , let T , δ, V and M be defined as in Theorem 1.29, and assume
L is a Lipschitz constant for f on V . Let 0 < ϵ < min{T, δ/M, 1/L}, and define V0 ⊆ V by
V0 = [t0 − ϵ, t0 + ϵ]×Bδ(x0). By Theorem 1.29 the IVP (1.32) has a unique solution φ(·, t0, x0)
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on [t0 − ϵ, t0 + ϵ]. Now let τ ∈ I := [t0 − ϵ/4, t0 + ϵ/4] and ξ ∈ B := Bδ/2(x0) be arbitrary, and
consider the IVP

ẋ = f(t, x), x(τ) = ξ. (1.51)

Define Jτ = [τ − ϵ/2, τ + ϵ/2]. Since Vτξ := Jτ ×Bδ/2(ξ) ⊆ V0 ⊆ V ⊆ U , Theorem 1.29 implies
there is a unique solution φ(·, τ, ξ) to (1.51) on Jτ with Γφ(·,τ,ξ)(Jτ ) ⊆ Vτξ. But I ⊆ Jτ , so that
φ(·, τ, ξ) satisfies (1.51) on I with

Γφ(·,τ,ξ)(I) ⊆ Γφ(·,τ,ξ)(Jτ ) ⊆ Vτξ,

and we conclude that φ(t, τ, ξ) is defined for all (t, τ, ξ) ∈ I × I ×B.

Proof of (2). Fix (t1, τ1, ξ1), (t2, τ2, ξ2) ∈ I × I × B. By Theorem 1.39, and more specifically
(1.49), we have

|φ(t1, τ1, ξ1)− φ(t1, τ1, ξ2)| ≤ |ξ1 − ξ2|eL|t1−τ1|. (1.52)

Now define u : I → R by

u(t) = |φ(t, τ1, ξ2)− φ(t, τ2, ξ2)|.

By Proposition 1.26,

u(t) =

∣∣∣∣(ξ2 + ∫ t

τ1

f(r, φ(r, τ1, ξ2))dr

)
−
(
ξ2 +

∫ t

τ2

f(r, φ(r, τ2, ξ2))dr

)∣∣∣∣
and so

u(t) =

∣∣∣∣∫ t

τ1

f(r, φ(r, τ1, ξ2))dr −
∫ t

τ2

f(r, φ(r, τ2, ξ2))dr

∣∣∣∣
=

∣∣∣∣∫ τ2

τ1

f(r, φ(r, τ1, ξ2))dr +

∫ t

τ2

f(r, φ(r, τ1, ξ2))dr −
∫ t

τ2

f(r, φ(r, τ2, ξ2))dr

∣∣∣∣
≤
∣∣∣∣∫ τ2

τ1

f(r, φ(r, τ1, ξ2))dr

∣∣∣∣+ ∣∣∣∣∫ t

τ2

|f(r, φ(r, τ1, ξ2))− f(r, φ(r, τ2, ξ2))|dr
∣∣∣∣

≤M |τ1 − τ2|+
∣∣∣∣∫ t

τ2

L|φ(r, τ1, ξ2)− φ(r, τ2, ξ2)|dr
∣∣∣∣

=M |τ1 − τ2|+
∣∣∣∣∫ t

τ2

Lu(r)dr

∣∣∣∣
for all t ∈ I. If t ∈ [τ2,∞) ∩ I then

u(t) ≤M |τ1 − τ2|+
∫ t

τ2

Lu(r)dr,

and so

u(t) ≤M |τ1 − τ2| exp
(∫ t

τ2

Ldr

)
=M |τ1 − τ2|eL(t−τ2)

by Corollary 1.37; and if t ∈ (−∞, τ2] ∩ I then

u(t) ≤M |τ1 − τ2|+
∫ τ2

t

Lu(r)dr,
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and so

u(t) ≤M |τ1 − τ2|eL(τ2−t)

by the analogous result to Corollary 1.37. Therefore

u(t) ≤M |τ1 − τ2|eL|t−τ2| (1.53)

for all t ∈ I.
Next, with another application of Proposition 1.26,

|φ(t1, τ2, ξ2)− φ(t2, τ2, ξ2)| =
∣∣∣∣∫ t1

t2

f(r, φ(r, τ2, ξ2))dr

∣∣∣∣ ≤M |t1 − t2|. (1.54)

Finally, applying the triangle inequality along with (1.52), (1.53), and (1.54), we obtain

|φ(t1, τ1, ξ1)− φ(t2, τ2, ξ2)| ≤ |φ(t1, τ1, ξ1)− φ(t1, τ1, ξ2)|+ u(t1) + |φ(t1, τ2, ξ2)− φ(t2, τ2, ξ2)|

≤ |ξ1 − ξ2|eL|t1−τ1| +M |τ1 − τ2|eL|t1−τ2| +M |t1 − t2|,

which is (1.50).

Proof of (3). This will follow from part (2) provided that we can find a compact set V such
that I × φ(I × I × B) ⊆ V ⊆ U . Indeed, in the proof of part (1) we constructed the set
V0 = [t0 − ϵ, t0 + ϵ]×Bδ(x0) with the property that

Γφ(·,τ,ξ)(I) ⊆ Γφ(·,τ,ξ)([τ − ϵ/2, τ + ϵ/2]) ⊆ [τ − ϵ/2, τ + ϵ/2]×Bδ/2(ξ) ⊆ V0 ⊆ U (1.55)

for all (τ, ξ) ∈ I ×B. We show that V0 is a suitable choice for V .
Let (t′, x) ∈ I × φ(I × I ×B). Thus t′ ∈ [t0 − ϵ, t0 + ϵ], and there exists (t, τ, ξ) ∈ I × I ×B

such that φ(t, τ, ξ) = x. Since t ∈ I and

{(s, φ(s, τ, ξ)) : s ∈ I} ⊆ [τ − ϵ/2, τ + ϵ/2]×Bδ/2(ξ)

by (1.55), we have x = φ(t, τ, ξ) ∈ Bδ/2(ξ) ⊆ Bδ(x0), and therefore (t′, x) ∈ V0. Having now
shown that I × φ(I × I ×B) ⊆ V0, the inequality (1.50) and a squeeze theorem argument may
be applied to show that φ is continuous on I × I ×B. ■

Fixing t0 ∈ I, an immediate implication of part (1) of Theorem 1.40 is that the function
φ(·, t0, ξ) is a solution on I to the IVP (1.48) for all ξ ∈ B.

In (1.48) we now assume that f ∈ Ck(U,Rn) for some k ≥ 1, and that the solution φ(·, t0, ξ) to
the IVP on I is differentiable in the third argument (i.e. with respect to ξ). We continue to assume
ξ ∈ B for B as defined in Theorem 1.40, and t0 ∈ I is fixed. Since φ̇(t, t0, ξ) = f(t, φ(t, t0, ξ))
for all t ∈ I and ξ ∈ B, it follows that φ̇(t, t0, ξ) is differentiable in the third argument as well.

Define φ = (φj)
n
j=1, so that φj(·, t0, ·) : I × {t0} × B → R for each 1 ≤ j ≤ n. Also let

ξ = (ξj)
n
j=1. Using the notation introduced in §1.2, the linear mapping ∂ξφ : Rn → Rn has n×n

matrix [∂ξφ] given by

[∂ξφ(t, t0, ξ)]ij =
∂φi
∂ξj

(t, t0, ξ)
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for 1 ≤ i, j ≤ n. More explicitly we have

[∂ξφ] =


∂φ1

∂ξ1
· · · ∂φ1

∂ξn
...

. . .
...

∂φn
∂ξ1

· · · ∂φn
∂ξn

.
Now, by (1.48) and the chain rule,

∂ξ∂tφ(t, t0, ξ) = ∂ξf(t, φ(t, t0, ξ)) = ∂xf(t, φ(t, t0, ξ)) ◦ ∂ξφ(t, t0, ξ),

where ∂xf denotes the partial derivative of f with respect to the second argument. If we adopt
the convention of denoting the composition of functions by juxtaposition, then we may write
simply

∂ξ∂tφ(t, t0, ξ) = ∂xf(t, φ(t, t0, ξ))∂ξφ(t, t0, ξ). (1.56)

Now we consider the so-called first variational equation

ẏ = A(t, ξ)y, (1.57)

where
A(t, ξ) := ∂xf(t, φ(t, t0, ξ)).

The equation is linear in y, and if we suppose ∂ξ∂tφ = ∂t∂ξφ, then by inspection it’s seen that
the function t 7→ ∂ξφ(t, t0, ξ) is a solution to (1.57) on I for each ξ ∈ B. Equivalent to (1.57) is
the integral equation

y(t) = En +

∫ t

t0

A(s, ξ)y(s)ds, (1.58)

where En is the n× n identity matrix. We pass from (1.57) to (1.58) by first integrating the
former with respect to t to obtain the family of antiderivatives

y(t) = C +

∫ t

t0

A(s, ξ)y(s)ds,

where C is an arbitrary constant n× n matrix. Thus y(t0) = C, and to arrange for ∂ξφ(t, t0, ξ)
to be the solution we next observe that φ(t0, t0, ξ) = ξ, so that ∂ξφ(t0, t0, ξ) = En, and thus we
must choose C to be En.


