1. 10 pts. Use the Lagrange multiplier method to find the absolute maximum and minimum values, if any, of $f(x, y)=x^{2}+y^{2}$ subject to the constraint $2 x^{2}+3 x y+2 y^{2}=7$.
2. 10 pts. Evaluate the double integral

$$
\int_{0}^{\pi / 2} \int_{0}^{\cos y} e^{\sin y} d x d y
$$

3. 10 pts . Evaluate the double integral over the region R, choosing a convenient order of integration:

$$
\iint_{R} x \sec ^{2}(x y) d A, \quad R=\left\{(x, y): 0 \leq x \leq \frac{\pi}{3}, 0 \leq y \leq 1\right\}
$$

4. 10 pts . Evaluate the double integral

$$
\iint_{R} \frac{2 y}{\sqrt{x^{4}+1}} d A
$$

where R is the region bounded by $x=1, x=2, y=x^{3 / 2}$, and $y=0$.
5. 10 pts. Evaluate using polar coordinates:

$$
\int_{-4}^{4} \int_{0}^{\sqrt{16-y^{2}}}\left(16-x^{2}-y^{2}\right) d x d y
$$

6. 10 pts . Use a double integral and polar coordinates to find the volume of the solid bounded below by the paraboloid $z=x^{2}+y^{2}-x-y$ and above by the plane $z=4-x-y$.
7. 10 pts . Find the volume of the region in space bounded by the graphs of $z=9-x^{2}, y=-x+2$, $y=0$, and $z=0$, with $x \geq 0$.
8. 10 pts. Rewrite the integral

$$
\int_{0}^{1} \int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} d z d y d x
$$

in the order $d y d z d x$, then evaluate the resulting integral.
9. 10 pts . Use cylindrical coordinates to find the volume of the region that is inside both the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.
10. 10 pts. Evaluate

$$
\iiint_{D}\left(x^{2}+y^{2}\right) d V
$$

where D is the region outside the sphere $x^{2}+y^{2}+z^{2}=1$ and inside the sphere $x^{2}+y^{2}+z^{2}=16$.

