1. 10 pts. Find the domain and range of $F(x, y)=\ln (3+\cos (x+y))$.
2. 10 pts. Sketch three level curves for $f(x, y)=x^{3}-y$, labeling each curve with its z value.
3. 10 pts . Use the Two-Path Test to prove that the limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+y^{4}}
$$

4. 10 pts. Evaluate the limit

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{\sqrt{y}-\sqrt{x+1}}{y-x-1} .
$$

5. 10 pts. Find the partial derivatives indicated.
(a) Find φ_{x} and φ_{y} for $\varphi(x, y)=y^{3} \tan ^{-1}\left(x^{2} y\right)$.
(b) Find ψ_{z} and $\psi_{x y}$ for $\psi(x, y, z)=\frac{y}{x+z}$.
6. Let

$$
f(x, y)= \begin{cases}\frac{2 x y^{2}}{x^{2}+y^{4}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) 10 pts. Is f continuous at $(0,0)$? If not, prove it.
(b) 5 pts. Is f differentiable at $(0,0)$? If not, why not?
(c) 10 pts. Evaluate $f_{x}(0,0)$ and $f_{y}(0,0)$, if they exist.
7. 10 pts. Given $w=\cos (2 x) \sin (3 y)$ with $x=t / 2$ and $y=t^{4}$, use an appropriate chain rule to find $d w / d t$. Express the answer in terms of t.
8. Let $f(x, y)=12-4 x^{2}-y^{2}$.
(a) 5 pts. Find the gradient of f.
(b) 5 pts. Find the unit vector that gives the direction of maximum increase (i.e. steepest ascent) for f at $(1,2)$.
(c) 5 pts. Find the unit vectors that give the directions of zero change for f at $(1,2)$.
(d) 10 pts. Let C be the path of steepest descent on the surface $z=f(x, y)$ beginning at $(1,2,4)$, and let C_{0} be the projection of C onto the $x y$-plane. Find an equation for C_{0}.
9. 10 pts. Compute the directional derivative of

$$
f(x, y)=13 e^{x y}
$$

at the point $(1,0)$ in the direction $\langle 5,12\rangle$.
10. Consider the surface S given by $f(x, y)=(x+y) e^{x y}$.
(a) 10 pts . Find an equation of the tangent plane to S at the point $(2,0,2)$.
(b) 5 pts. Use the tangent plane to estimate the value of $f(1.95,0.05)$.
11. 10 pts . Find the critical points of

$$
f(x, y)=10-x^{3}-y^{3}-3 x^{2}+3 y^{2},
$$

then determine whether each critical point corresponds to a local maximum, local minimum, or saddle point.

