1. 5 pts. Find the vector with length 12 pointing in the direction opposite that of $\langle 4,-9\rangle$.
2. 10 pts . Find the velocity \mathbf{v} of an ocean freighter that is traveling 60° north of east at $35 \mathrm{~km} / \mathrm{hr}$.
3. 10 pts . Give a geometric description of the set of points (x, y, z) satisfying

$$
x^{2}-6 x+y^{2}+z^{2}-20 z+9>0 .
$$

4. 10 pts. Find the values of x and y such that the points $(1,2,3),(4,7,1)$ and $(x, y, 9)$ are collinear.
5. 10 pts. each Let $\mathbf{u}=\langle 2,0,-1\rangle$ and $\mathbf{v}=\langle-3,8,4\rangle$.
(a) Find the angle between \mathbf{u} and \mathbf{v} to the nearest tenth of a degree.
(b) Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v}.
6. 10 pts. For what value of c is the vector $\mathbf{u}=\langle 4,-3, c\rangle$ orthogonal to $\mathbf{v}=\langle 2,9,-1\rangle$?
7. 10 pts . Find a vector orthogonal to both $\langle 0,-1,2\rangle$ and $\langle 8,-2,-1\rangle$.
8. 10 pts . Find a parametrization for the line through $(-3,-3,8)$ that is perpendicular to both the y-axis and $\mathbf{u}=\langle 0,3,-5\rangle$.
9. 10 pts. Determine whether the lines are parallel, intersecting, or skew:

$$
\mathbf{r}(t)=\langle 5+2 t, 3+3 t, 1-t\rangle, \quad \mathbf{R}(s)=\langle 13-3 s, 13-4 s, 4-2 s\rangle
$$

If they intersect, find the point(s) of intersection.
10. 10 pts. Given that $\mathbf{r}^{\prime}(t)=\left\langle\cos t, 1-2 e^{-t}, 1-2 e^{t}\right\rangle$ and $\mathbf{r}(0)=\langle 1,1,1\rangle$, find $\mathbf{r}(t)$.
11. 10 pts. Find an equation of the plane containing the points $(1,1,0),(3,-1,4)$ and $(1,2,3)$.
12. 10 pts. Find an equation of the line where the planes $x+2 y-3 z=1$ and $x+y+z=2$ intersect.
13. 10 pts. Find the domain of $\mathbf{r}(t)=\sqrt{4-t^{2}} \mathbf{i}+\sqrt{t} \mathbf{j}-\frac{5}{\sqrt{1+t}} \mathbf{k}$.
14. 10 pts . Find the arc length of the curve given by $\mathbf{r}(t)=\left\langle 2 t^{9 / 2}, t^{3}\right\rangle$ for $0 \leq t \leq 3$.
15. 10 pts. each Let C be the curve given by $\mathbf{r}(t)=\langle t, \ln t\rangle$ for $t>0$.
(a) Find the unit tangent vector \mathbf{T} for \mathbf{r}.
(b) Find the curvature κ for \mathbf{r}.
(c) Find the point on C where the curvature attains a maximum. What is the maximum curvature value?

