1 Set $g(x, y)=2 x^{2}+3 x y+2 y^{2}-7$, so the constraint is $g(x, y)=0$. Find all $(x, y) \in \mathbb{R}^{2}$ for which there can be found some $\lambda \in \mathbb{R}$ such that the system

$$
\left\{\begin{aligned}
f_{x}(x, y) & =\lambda g_{x}(x, y, z) \\
f_{y}(x, y) & =\lambda g_{y}(x, y, z) \\
g(x, y) & =0
\end{aligned}\right.
$$

has a solution. Explicitly the system is

$$
\left\{\begin{align*}
2 x & =\lambda(4 x+3 y) \tag{1}\\
2 y & =\lambda(3 x+4 y) \\
7 & =2 x^{2}+3 x y+2 y^{2}
\end{align*}\right.
$$

The 1 st equation gives $\lambda=\frac{2 x}{4 x+3 y}$. Put this into the 2 nd equation and manipulate to get $x^{2}=y^{2}$, and thus $y= \pm x$. Putting $y=x$ into the 3rd equation and solving yields $x= \pm 1$, and so $(1,1)$ and $(-1,-1)$ are solutions to the system. Putting $y=-x$ into the 3 rd equation and solving yields $x= \pm \sqrt{7}$, and so $(\sqrt{7},-\sqrt{7})$ and $(-\sqrt{7}, \sqrt{7})$ are solutions to the system. Now evaluate f at each of the four points found:

$$
f(1,1)=f(-1,-1)=2 \quad \text { and } \quad f(\sqrt{7},-\sqrt{7})=f(-\sqrt{7}, \sqrt{7})=14
$$

Thus f attains a maximum value of 14 on the curve C given by g, and a minimum value of 2 .
2 Making the substitution $u=\sin y$ along the way, we have

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{\cos y} e^{\sin y} d x d y & =\int_{0}^{\pi / 2}\left[x e^{\sin y}\right]_{0}^{\cos y} d y=\int_{0}^{\pi / 2} e^{\sin y} \cos y d y \\
& =\int_{0}^{1} e^{u} d u=\left[e^{u}\right]_{0}^{1}=e-1
\end{aligned}
$$

3 The order $d y d x$ works well, and integration by parts can be used to figure out $\int \tan x d x$:

$$
\int_{0}^{\pi / 3} \int_{0}^{1} x \sec ^{2}(x y) d y d x=\int_{0}^{\pi / 3}[\tan x y]_{0}^{1} d x=\int_{0}^{\pi / 3} \tan x d x=[\ln |\sec x|]_{0}^{\pi / 3}=\ln 2
$$

4 We have

$$
\int_{1}^{2} \int_{0}^{x^{3 / 2}} \frac{2 y}{\sqrt{x^{4}+1}} d y d x=\int_{1}^{2}\left[\frac{y^{2}}{\sqrt{x^{4}+1}}\right]_{0}^{x^{3 / 2}} d x=\int_{1}^{2} \frac{x^{3}}{\sqrt{x^{4}+1}} d x=\frac{1}{4} \int_{2}^{17} \frac{1}{\sqrt{u}} d u=\frac{\sqrt{17}-\sqrt{2}}{2}
$$

5 Converting to polar coordinates...

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{4}\left(16-r^{2}\right) r d r d \theta=\int_{-\pi / 2}^{\pi / 2} 64 d \theta=64 \pi
$$

6 The height function is

$$
h(x)=(4-x-y)-\left(x^{2}+y^{2}-x-y\right)=4-x^{2}-y^{2}
$$

while the region of integration R will be the region in the $x y$-plane enclosed by the curve that is the projection onto $z=0$ of the curve of intersection of the surfaces. The curve of intersection is $4-x-y=x^{2}+y^{2}-x-y$, or $x^{2}+y^{2}=4$, which is a circle with center $(0,0)$ and radius 2 , and so in polar coordinates

$$
R=\{(r, \theta): 0 \leq \theta \leq 2 \pi, \quad 0 \leq r \leq 2\}
$$

The volume of the solid is

$$
\mathcal{V}=\iint_{R} h=\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r d r d \theta=\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2} d \theta=8 \pi
$$

7 For any $(x, y, z) \in D$ we have $0 \leq z \leq 9-x^{2}$. We can evaluate $\iiint_{D} d V$ in the order $d z d y d x$ (other orders are possible). See the figure below.

To determine the limits of integration for y and x, project D onto the $x y$-plane to obtain the region R shown at right in the figure. There it can be seen that if $(x, y) \in R$, then $0 \leq y \leq 2-x$ for $0 \leq x \leq 2$, and so the limits of integration for y will be 0 and $2-x$, and the limits of integration for x will be 0 and 2 . We obtain

$$
\begin{aligned}
\mathcal{V}(D) & =\iiint_{D} d V=\int_{0}^{2} \int_{0}^{2-x} \int_{0}^{9-x^{2}} d z d y d x \\
& =\int_{0}^{2} \int_{0}^{2-x}\left(9-x^{2}\right) d y d x=\int_{0}^{2}\left[9 y-x^{2} y\right]_{0}^{2-x} d x \\
& =\int_{0}^{2}\left[9(2-x)-x^{2}(2-x)\right] d x=\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}-\frac{9}{2} x^{2}+18 x\right]_{0}^{2}=\frac{50}{3}
\end{aligned}
$$

It can be instructive to try determining the volume of D by integrating in the orders $d z d x d y$ and $d y d z d x$.

8 On the $y z$-plane the region of integration is

$$
R=\left\{(y, z): 0 \leq z \leq \sqrt{4-y^{2}},-2 \leq y \leq 2\right\}
$$

the top half of a circular disc of radius 2 :

This region is also expressible as

$$
R=\left\{(y, z):-\sqrt{4-z^{2}} \leq y \leq \sqrt{4-z^{2}}, 0 \leq z \leq 2\right\}
$$

and so the integral becomes

$$
\int_{0}^{1} \int_{0}^{2} \int_{-\sqrt{4-z^{2}}}^{\sqrt{4-z^{2}}} d y d z d x
$$

To evaluate the integral let $z=2 \sin \theta$, so that $d z=2 \cos \theta d \theta$, and we obtain

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2} \int_{-\sqrt{4-z^{2}}}^{\sqrt{4-z^{2}}} d y d z d x & =\int_{0}^{1}\left(\int_{0}^{\pi / 2} 2 \sqrt{4-4 \sin ^{2} \theta} \cdot 2 \cos \theta d \theta\right) d x \\
& =\int_{0}^{1}\left(8 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta\right) d x=8 \int_{0}^{1} \int_{0}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta d x \\
& =8 \int_{0}^{1}\left[\frac{1}{2} \theta+\frac{\sin 2 \theta}{4}\right]_{0}^{\pi / 2} d x=2 \pi
\end{aligned}
$$

9 The cone and sphere intersect at (x, y, z) where $x^{2}+y^{2}=z^{2}=2-x^{2}-y^{2}$, which is a curve in space that projects onto the $x y$-plane as the unit circle $x^{2}+y^{2}=1$. In cylindrical coordinates the region of integration D is thus

$$
D=\left\{(r, \theta, z): 0 \leq \theta \leq 2 \pi, \quad 0 \leq r \leq 1, \quad r \leq z \leq \sqrt{2-r^{2}}\right\}
$$

(Note that all (r, θ) such that $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 1$ covers the unit disc, whereas $z=r$ is the cone while $z=\sqrt{2-r^{2}}$ is the sphere.) The volume is

$$
V=\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} r d z d r d \theta=\frac{4 \pi}{3}(\sqrt{2}-1)
$$

10 In spherical coordinates the spheres are $\rho=1$ and $\rho=4$, and so the region D is

$$
D=\{(\rho, \varphi, \theta): 0 \leq \theta \leq 2 \pi, \quad 0 \leq \varphi \leq \pi, \quad 1 \leq \rho \leq 4\}
$$

Now,

$$
\begin{aligned}
\iiint_{D}\left(x^{2}+y^{2}\right) d V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{4}\left[(\rho \sin \varphi \cos \theta)^{2}+(\rho \sin \varphi \sin \theta)^{2}\right] \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{4} \rho^{4} \sin ^{3} \varphi d \rho d \varphi d \theta=\frac{2728 \pi}{5}
\end{aligned}
$$

