Math 242 Exam \#2 Key (Summer 2023)

$1 \operatorname{Dom} F=\mathbb{R}^{2}$ and $\operatorname{Ran} F=[\ln 2, \ln 4]$.

2 We let $f(x, y)=c$ for various constants c, and graph $y=x^{3}-c$. Letting $z=f(x, y)$, the level curves below are, from highest to lowest, $z=2, z=1, z=0, z=-1, z=-2$.

3 Along the path $y=m x$ we get

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+y^{4}}=\lim _{(x, m x) \rightarrow(0,0)} \frac{x^{2}(m x)^{2}}{x^{4}+(m x)^{4}}=\lim _{(x, m x) \rightarrow(0,0)} \frac{m^{2}}{1+m^{4}}=\frac{m^{2}}{1+m^{4}}
$$

So along path $y=0$ the limit is 0 , and along $y=x$ the limit is $\frac{1}{2}$. By the Two-Path Test the limit does not exist.

4 If L is the limit, then

$$
\begin{aligned}
L & =\lim _{(x, y) \rightarrow(1,2)} \frac{\sqrt{y}-\sqrt{x+1}}{y-(x+1)}=\lim _{(x, y) \rightarrow(1,2)} \frac{\sqrt{y}-\sqrt{x+1}}{(\sqrt{y}-\sqrt{x+1})(\sqrt{y}+\sqrt{x+1})} \\
& =\lim _{(x, y) \rightarrow(1,2)} \frac{1}{\sqrt{y}+\sqrt{x+1}}=\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

5a $\varphi_{x}=\frac{y^{3}}{1+\left(x^{2} y\right)^{2}} \cdot \frac{\partial}{\partial x}\left(x^{2} y\right)=\frac{2 x y^{4}}{1+x^{4} y^{2}}$ and, with the product rule,

$$
\varphi_{y}=3 y^{2} \tan ^{-1}\left(x^{2} y\right)+\frac{y^{3}}{1+\left(x^{2} y\right)^{2}} \cdot \frac{\partial}{\partial y}\left(x^{2} y\right)=3 y^{2} \tan ^{-1}\left(x^{2} y\right)+\frac{x^{2} y^{3}}{1+x^{4} y^{2}}
$$

$\mathbf{5 b} \quad \psi_{z}=\frac{\partial}{\partial z}\left(\frac{y}{x+z}\right)=-\frac{y}{(x+z)^{2}} \quad \& \quad \psi_{x y}=\frac{\partial}{\partial y}\left(-\frac{y}{(x+z)^{2}}\right)=-\frac{1}{(x+z)^{2}}$.
6a Along the path $x=y^{2}$ the limit becomes

$$
\lim _{\left(y^{2}, y\right) \rightarrow(0,0)} \frac{2 y^{4}}{y^{4}+y^{4}}=\lim _{\left(y^{2}, y\right) \rightarrow(0,0)}(1)=1,
$$

which implies that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \neq 0=f(0,0)
$$

and therefore f is not continuous at $(0,0)$.
6b Function f is not differentiable at $(0,0)$ because it is not continuous there.
6c By definition we have

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0}(0)=0
$$

and

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0}(0)=0 .
$$

7 Here $w(t)=f(x, y)$ with $f(x, y)=\cos (2 x) \sin (3 y), x=x(t)=t / 2$ and $y=y(t)=t^{4}$. By the appropriate chain rule,

$$
\begin{aligned}
\frac{d w}{d t} & =f_{x}(x, y) x^{\prime}(t)+f_{y}(x, y) y^{\prime}(t)=-\sin (2 x) \sin (3 y)+12 t^{3} \cos (2 x) \cos (3 y) \\
& =-\sin (t) \sin \left(3 t^{4}\right)+12 t^{3} \cos (t) \cos \left(3 t^{4}\right)
\end{aligned}
$$

8a $\quad \nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\langle-8 x,-2 y\rangle$.
8b $\frac{\nabla f(1,2)}{|\nabla f(1,2)|}=\frac{\langle-8,-4\rangle}{\sqrt{80}}=\frac{\langle-2,-1\rangle}{\sqrt{5}}$
$8 \mathbf{c} \pm \frac{\langle 1,-2\rangle}{\sqrt{5}}$

8d Let C_{0} be given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \geq 0$. Then for any t the tangent vector to C_{0} at the point $(x(t), y(t))$, which is $\mathbf{r}^{\prime}(t)$, must be in the direction of $-\nabla f(x, y)=\langle 8 x(t), 2 y(t)\rangle$. Therefore we set

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\langle 8 x(t), 2 y(t)\rangle
$$

from which we obtain the differential equations $x^{\prime}=8 x$ and $y^{\prime}=2 y$. The method of separation of variables solves $x^{\prime}=8 x$:

$$
\frac{d x}{d t}=8 x \Rightarrow \int \frac{1}{8 x} d x=\int d t \Rightarrow \frac{1}{8} \ln (8 x)=t+K \Rightarrow x(t)=\frac{1}{8} e^{8 t+8 K}=A e^{8 t}
$$

where K is an arbitrary constant, and $A=\frac{1}{8} e^{8 K}$ is again arbitrary. Similarly $y^{\prime}=2 y$ yields $y(t)=B e^{2 t}$ for arbitrary B. Since C starts at $(1,2,4)$, we must have C_{0} start at $(1,2)$, so $\mathbf{r}(0)=\langle x(0), y(0)\rangle=\langle 1,2\rangle$. Now, $A=A e^{0}=x(0)=1$ and $B=B e^{0}=y(0)=2$, and so an equation for C_{0} is

$$
\mathbf{r}(t)=\left\langle e^{8 t}, 2 e^{2 t}\right\rangle, \quad t \geq 0
$$

9 First get the unit vector in the direction of $\langle 5,12\rangle$, which is $\mathbf{u}=\frac{1}{13}\langle 5,12\rangle$. Now, $D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}=\left\langle 13 y e^{x y}, 13 x e^{x y}\right\rangle \cdot \frac{1}{13}\langle 5,12\rangle=\left\langle y e^{x y}, x e^{x y}\right\rangle \cdot\langle 5,12\rangle=(12 x+5 y) e^{x y}$, and so $D_{\mathbf{u}} f(1,0)=12$.

10a We have

$$
f_{x}(x, y)=\left(y^{2}+x y+1\right) e^{x y} \quad \text { and } \quad f_{y}(x, y)=\left(x^{2}+x y+1\right) e^{x y}
$$

Using

$$
z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

with $\left(x_{0}, y_{0}\right)=(2,0)$, we get

$$
z=f_{x}(2,0)(x-2)+f_{y}(2,0)(y-0)+f(2,0)=(x-2)+5 y+2
$$

which simplifies to $x+5 y-z=0$.
10b The tangent plane serves as a linearization L of the function f in a neighborhood of $(2,0)$, so that $z=f(x, y) \approx L(x, y)$ for (x, y) near $(2,0)$. From (1a) we have $z=x+5 y$, so that

$$
L(x, y)=x+5 y
$$

and hence $z=f(1.95,0.05) \approx L(1.95,0.05)=1.95+5(0.05)=2.2$.

11 First we gather our partial derivatives:

$$
\begin{aligned}
f_{x}(x, y) & =-3 x^{2}-6 x \\
f_{y}(x, y) & =-3 y^{2}+6 y \\
f_{x x}(x, y) & =-6 x-6 \\
f_{y y}(x, y) & =-6 y+6 \\
f_{x y}(x, y) & =0
\end{aligned}
$$

At no point does either f_{x} or f_{y} fail to exist, so we search for any point (x, y) for which $f_{x}(x, y)=f_{y}(x, y)=0$. This yields the system

$$
\left\{\begin{array}{l}
3 x^{2}+6 x=0 \\
3 y^{2}-6 y=0
\end{array}\right.
$$

The system has solutions $(0,0),(0,2),(-2,0)$, and $(-2,2)$. We construct a table:

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	Φ	Conclusion
$(0,0)$	-6	6	0	-36	Saddle Point
$(0,2)$	-6	-6	0	36	Local Maximum
$(-2,0)$	6	6	0	36	Local Minimum
$(-2,2)$	6	-6	0	-36	Saddle Point

Below is a stereoscopic graph of a part of the surface containing the points of interest.

