1 Dom $F = \mathbb{R}^2$ and Ran $F = [\ln 2, \ln 4]$.

2 We let f(x, y) = c for various constants c, and graph $y = x^3 - c$. Letting z = f(x, y), the level curves below are, from highest to lowest, z = 2, z = 1, z = 0, z = -1, z = -2.

3 Along the path y = mx we get

$$\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^4+y^4} = \lim_{(x,mx)\to(0,0)}\frac{x^2(mx)^2}{x^4+(mx)^4} = \lim_{(x,mx)\to(0,0)}\frac{m^2}{1+m^4} = \frac{m^2}{1+m^4}$$

So along path y = 0 the limit is 0, and along y = x the limit is $\frac{1}{2}$. By the Two-Path Test the limit does not exist.

4 If *L* is the limit, then

$$L = \lim_{(x,y)\to(1,2)} \frac{\sqrt{y} - \sqrt{x+1}}{y - (x+1)} = \lim_{(x,y)\to(1,2)} \frac{\sqrt{y} - \sqrt{x+1}}{(\sqrt{y} - \sqrt{x+1})(\sqrt{y} + \sqrt{x+1})}$$
$$= \lim_{(x,y)\to(1,2)} \frac{1}{\sqrt{y} + \sqrt{x+1}} = \frac{1}{2\sqrt{2}}.$$

5a
$$\varphi_x = \frac{y^3}{1 + (x^2 y)^2} \cdot \frac{\partial}{\partial x} (x^2 y) = \frac{2xy^4}{1 + x^4 y^2}$$
 and, with the product rule,
 $\varphi_y = 3y^2 \tan^{-1}(x^2 y) + \frac{y^3}{1 + (x^2 y)^2} \cdot \frac{\partial}{\partial y} (x^2 y) = 3y^2 \tan^{-1}(x^2 y) + \frac{x^2 y^3}{1 + x^4 y^2}$

5b
$$\psi_z = \frac{\partial}{\partial z} \left(\frac{y}{x+z} \right) = -\frac{y}{(x+z)^2} \quad \& \quad \psi_{xy} = \frac{\partial}{\partial y} \left(-\frac{y}{(x+z)^2} \right) = -\frac{1}{(x+z)^2}.$$

6a Along the path $x = y^2$ the limit becomes

$$\lim_{(y^2,y)\to(0,0)}\frac{2y^4}{y^4+y^4} = \lim_{(y^2,y)\to(0,0)}(1) = 1,$$

which implies that

$$\lim_{(x,y)\to(0,0)} f(x,y) \neq 0 = f(0,0)$$

and therefore f is not continuous at (0, 0).

6b Function f is not differentiable at (0,0) because it is not continuous there.

6c By definition we have

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} (0) = 0,$$

and

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} (0) = 0.$$

7 Here w(t) = f(x, y) with $f(x, y) = \cos(2x)\sin(3y)$, x = x(t) = t/2 and $y = y(t) = t^4$. By the appropriate chain rule,

$$\frac{dw}{dt} = f_x(x,y)x'(t) + f_y(x,y)y'(t) = -\sin(2x)\sin(3y) + 12t^3\cos(2x)\cos(3y)$$
$$= -\sin(t)\sin(3t^4) + 12t^3\cos(t)\cos(3t^4).$$

8a
$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = \langle -8x, -2y \rangle.$$

8b
$$\frac{\nabla f(1,2)}{|\nabla f(1,2)|} = \frac{\langle -8, -4 \rangle}{\sqrt{80}} = \frac{\langle -2, -1 \rangle}{\sqrt{5}}$$

8c $\pm \frac{\langle 1, -2 \rangle}{\sqrt{5}}$

 $\sqrt{5}$

8d Let C_0 be given by $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $t \ge 0$. Then for any t the tangent vector to C_0 at the point (x(t), y(t)), which is $\mathbf{r}'(t)$, must be in the direction of $-\nabla f(x, y) = \langle 8x(t), 2y(t) \rangle$. Therefore we set

$$\mathbf{r}'(t) = \langle x'(t), y'(t) \rangle = \langle 8x(t), 2y(t) \rangle,$$

from which we obtain the differential equations x' = 8x and y' = 2y. The method of separation of variables solves x' = 8x:

$$\frac{dx}{dt} = 8x \quad \Rightarrow \quad \int \frac{1}{8x} \, dx = \int dt \quad \Rightarrow \quad \frac{1}{8} \ln(8x) = t + K \quad \Rightarrow \quad x(t) = \frac{1}{8} e^{8t + 8K} = A e^{8t},$$

where K is an arbitrary constant, and $A = \frac{1}{8}e^{8K}$ is again arbitrary. Similarly y' = 2y yields $y(t) = Be^{2t}$ for arbitrary B. Since C starts at (1, 2, 4), we must have C_0 start at (1, 2), so $\mathbf{r}(0) = \langle x(0), y(0) \rangle = \langle 1, 2 \rangle$. Now, $A = Ae^0 = x(0) = 1$ and $B = Be^0 = y(0) = 2$, and so an equation for C_0 is

$$\mathbf{r}(t) = \langle e^{8t}, 2e^{2t} \rangle, \quad t \ge 0.$$

9 First get the unit vector in the direction of $\langle 5, 12 \rangle$, which is $\mathbf{u} = \frac{1}{13} \langle 5, 12 \rangle$. Now,

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u} = \langle 13ye^{xy}, 13xe^{xy} \rangle \cdot \frac{1}{13} \langle 5, 12 \rangle = \langle ye^{xy}, xe^{xy} \rangle \cdot \langle 5, 12 \rangle = (12x + 5y)e^{xy},$$

and so $D_{\mathbf{u}}f(1,0) = 12.$

10a We have

$$f_x(x,y) = (y^2 + xy + 1)e^{xy}$$
 and $f_y(x,y) = (x^2 + xy + 1)e^{xy}$

Using

$$z = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$$

with $(x_0, y_0) = (2, 0)$, we get

$$z = f_x(2,0)(x-2) + f_y(2,0)(y-0) + f(2,0) = (x-2) + 5y + 2,$$

which simplifies to x + 5y - z = 0.

10b The tangent plane serves as a linearization L of the function f in a neighborhood of (2,0), so that $z = f(x,y) \approx L(x,y)$ for (x,y) near (2,0). From (1a) we have z = x + 5y, so that

$$L(x,y) = x + 5y$$

and hence $z = f(1.95, 0.05) \approx L(1.95, 0.05) = 1.95 + 5(0.05) = 2.2$.

11 First we gather our partial derivatives:

$$f_x(x, y) = -3x^2 - 6x$$

$$f_y(x, y) = -3y^2 + 6y$$

$$f_{xx}(x, y) = -6x - 6$$

$$f_{yy}(x, y) = -6y + 6$$

$$f_{xy}(x, y) = 0$$

At no point does either f_x or f_y fail to exist, so we search for any point (x, y) for which $f_x(x, y) = f_y(x, y) = 0$. This yields the system

$$\begin{cases} 3x^2 + 6x = 0\\ 3y^2 - 6y = 0 \end{cases}$$

The system has solutions (0,0), (0,2), (-2,0), and (-2,2). We construct a table:

(x,y)	f_{xx}	f_{yy}	f_{xy}	Φ	Conclusion
(0,0)	-6	6	0	-36	Saddle Point
(0,2)	-6	-6	0	36	Local Maximum
(-2,0)	6	6	0	36	Local Minimum
(-2,2)	6	-6	0	-36	Saddle Point

Below is a stereoscopic graph of a part of the surface containing the points of interest.

