Math 242 Exam \#1 Key (Summer 2023)

1 Let $\mathbf{u}=\langle 4,-9\rangle$, so the vector is $\mathbf{v}=\frac{-12 \mathbf{u}}{|\mathbf{u}|}=-\frac{12}{\sqrt{97}}\langle 4,-9\rangle$.
2 Using a special triangle from trigonometry is fastest: $\mathbf{v}=\frac{35}{2}\langle 1, \sqrt{3}\rangle$.
3 Completing squares yields

$$
\left(x^{2}-6 x+9\right)+y^{2}+\left(z^{2}-20 z+100\right)>-9+9+100 \Rightarrow(x-3)^{2}+y^{2}+(z-10)^{2}>100
$$

This is the region outside the closed ball of radius 10 centered at $(3,0,10)$.

4 First find a parametrization for the line containing the known points:

$$
\mathbf{r}(t)=\langle 1,2,3\rangle+t(\langle 4,7,1\rangle-\langle 1,2,3\rangle)=\langle 1,2,3\rangle+t\langle 3,5,-2\rangle=\langle 1+3 t, 2+5 t, 3-2 t\rangle
$$

Now, x and y must be such that $\mathbf{r}(t)=\langle x, y, 9\rangle$ for some t. That is,

$$
\left\{\begin{array}{l}
1+3 t=x \\
2+5 t=y \\
3-2 t=9
\end{array}\right.
$$

The last equation gives $t=-3$, and so we find that $x=-8$ and $y=-13$.
5a $|\mathbf{u}|=\sqrt{5}$ and $|\mathbf{v}|=\sqrt{89}$. Now,

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{-10}{\sqrt{5} \sqrt{89}} \Rightarrow \theta=\cos ^{-1}(0.4740) \approx 118.3^{\circ}
$$

5b We have

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}=-\frac{10}{89}\langle-3,8,4\rangle .
$$

$6 \mathbf{u} \perp \mathbf{v}$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$ if and only if $8-27-c=0$, and so $c=-19$ is required.

7 Suitable would be $\mathbf{v}=\langle 0,-1,2\rangle \times\langle 8,-2,-1\rangle=\langle 5,16,8\rangle$, but show the work
$\mathbf{8}$ The direction vector \mathbf{v} of the line is perpendicular to $\mathbf{j}=\langle 0,1,0\rangle$, so is parallel to $\mathbf{u} \times \mathbf{j}$. Thus we can let

$$
\mathbf{v}=\mathbf{u} \times \mathbf{j}=\left|\begin{array}{rr}
3 & -5 \\
1 & 0
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
0 & -5 \\
0 & 0
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
0 & 3 \\
0 & 1
\end{array}\right| \mathbf{k}=\langle 5,0,0\rangle,
$$

and a parametrization is

$$
\mathbf{r}(t)=\langle-3,-3,8\rangle+t\langle 5,0,0\rangle=\langle 5 t-3,-3,8\rangle, \quad t \in \mathbb{R}
$$

9 The direction vectors of the lines are $\langle 2,3,-1\rangle$ and $\langle-3,-4,-2\rangle$, which are not parallel vectors, and so the lines are not parallel. The lines intersect if and only if there is some s and t such that $\mathbf{r}(t)=\mathbf{R}(s)$. This gives us the system

$$
\left\{\begin{array}{l}
5+2 t=13-3 s \\
3+3 t=13-4 s \\
1-t=4-2 s
\end{array}\right.
$$

The 3rd equation gives $t=2 s-3$. Putting this into the 1st equation results in $s=2$, and hence $t=1$. However, putting $(s, t)=(2,1)$ into the 2 nd equation results in $6=5$, so there is no solution to the system. The lines do not intersect, and therefore are skew.

10 We have

$$
\mathbf{r}(t)=\left\langle\sin t+c_{1}, t+2 e^{-t}+c_{2}, t-2 e^{t}+c_{3}\right\rangle
$$

so $\mathbf{r}(0)=\left\langle c_{1}, 2+c_{2},-2+c_{3}\right\rangle$. Since $\mathbf{r}(0)=\langle 1,1,1\rangle$, it follows that $c_{1}=1, c_{2}=-1, c_{3}=3$. Therefore

$$
\mathbf{r}(t)=\left\langle\sin t+1, t+2 e^{-t}-1, t-2 e^{t}+3\right\rangle
$$

11 Let $p_{0}=(1,1,0), p_{1}=(3,-1,4), p_{2}=(1,2,3)$. Then

$$
\mathbf{n}=\overrightarrow{p_{0} p_{1}} \times \overrightarrow{p_{0} p_{2}}=\langle 2,-2,4\rangle \times\langle 0,1,3\rangle=\langle-10,-6,2\rangle
$$

is a normal vector for the plane. The equation of the plane is given by

$$
\mathbf{n} \cdot(\langle x, y, z\rangle-\langle 1,1,0\rangle)=0
$$

or $-10 x-6 y+2 z=-16$.

12 Find the solution set to the system

$$
\left\{\begin{array}{l}
x+2 y-3 z=1 \\
x+y+z=2
\end{array}\right.
$$

The 2 nd equation gives $z=2-x-y$, which when put into the 1st equation results in $4 x+5 y=7$, or $y=\frac{7}{5}-\frac{4}{5} x$, and hence $z=\frac{3}{5}-\frac{1}{5} x$. Solution set:

$$
\left\{\left(x, \frac{7}{5}-\frac{4}{5} x, \frac{3}{5}-\frac{1}{5} x\right): x \in \mathbb{R}\right\} .
$$

Replacing x with t, we parametrize the line as

$$
\mathbf{r}(t)=\left\langle t, \frac{7}{5}-\frac{4}{5} t, \frac{3}{5}-\frac{1}{5} t\right\rangle, \quad t \in \mathbb{R}
$$

$13 \operatorname{Dom}(\mathbf{r})=\left\{t \in \mathbb{R}: 4-t^{2} \geq 0, t \geq 0,1+t>0\right\}$. So we must have $t \in[-2,2], t \in[0, \infty)$, and $t \in(-1, \infty)$, which put together results in $t \in[0,2]$. Therefore $\operatorname{Dom}(\mathbf{r})=[0,2]$.
$14 \quad \mathbf{r}^{\prime}(t)=\left\langle 9 t^{7 / 2}, 3 t^{2}\right\rangle$, and so $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{81 t^{7}+9 t^{4}}=3 t^{2} \sqrt{9 t^{3}+1}$. Making the substitution $u=9 t^{3}+1$ along the way, we find the length L of the curve to be

$$
L=\int_{0}^{3}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{3} 3 t^{2} \sqrt{9 t^{3}+1} d t=\int_{1}^{244} \frac{\sqrt{u}}{9} d u=\frac{2}{27}\left(244^{3 / 2}-1\right)
$$

15a First, $\mathbf{r}^{\prime}(t)=\left\langle 1, t^{-1}\right\rangle$, so that $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{1+t^{-2}}$, and then

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left\langle 1, t^{-1}\right\rangle}{\sqrt{1+t^{-2}}}=\frac{\langle t, 1\rangle}{\sqrt{t^{2}+1}}
$$

15b Using the quotient rule,

$$
\mathbf{T}^{\prime}(t)=\left\langle\frac{\sqrt{t^{2}+1}-t^{2}\left(t^{2}+1\right)^{-1 / 2}}{t^{2}+1},-\frac{1}{2}\left(t^{2}+1\right)^{-3 / 2}(2 t)\right\rangle=\frac{1}{\left(t^{2}+1\right)^{3 / 2}}\langle 1,-t\rangle,
$$

and so the curvature is (after some simplications)

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{t}{\left(t^{2}+1\right)^{3 / 2}}
$$

15c Set $\kappa^{\prime}(t)=0$. Using the quotient rule and simplifying, we get

$$
\frac{1-2 t^{2}}{\left(t^{2}+1\right)^{5 / 2}}=0
$$

so that $1-2 t^{2}=0$. Solving for $t>0$ yields $t=\frac{1}{\sqrt{2}}$. That is, the curvature is maximal when $t=\frac{1}{\sqrt{2}}$, and the maximum curvature value is $\kappa\left(\frac{1}{\sqrt{2}}\right)=\frac{2}{3 \sqrt{3}}$ (which is about 0.385 but we want the exact value).

