MATH 242 EXaM #2 KEY (SUMMER 2013)

1 The function h is a composition of a polynomial function and the natural logarithm function,
and so it is continuous on its domain. We have

Dom(h) = {(z,y) : 2> = 3y > 0} = {(z,y) : y < 32°},
which is the shaded region in R? illustrated below.
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2 The level curve z = 1 has equation 1 = /22 + 4y2, which implies
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an ellipse. The level curve z = 2 has equation 2 = /22 + 432, which implies
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also an ellipse. Graph is below.
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4 First approach (0,0) on the path (z(t),y(t)) = (¢,0) (i.e. the x-axis), so the limit becomes:
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Next, approach (0,0) on the path (x(t),y(t)) = (t,t) (i.e. the line y = z), so the limit becomes

z(t)y(t) +y*() . e+ 1+t . 14+t 1
= lim =lim ————= =lim — = —.
=0 x2(t) + y2(t) t=0 12 + 12 t—0 22 t—>0 2 2
The limits don’t agree, so the original limit cannot exist by the Two-Path Test.
5a We have
222 21y
_ 2 2 —_
9oz, y) = In(z" +y°) + 21 42 and g, (v,y) = m
5b  We have

h.(x,y,z) = =3sin(r + 2y + 3z) and h,y(z,y,z) = —6cos(x + 2y + 3z).

6a Along the path y = z the limit becomes
T-T _ 1
lim

(z,2)—(0,0) 2 2’

lim ———=
(z,2)—(0,0) 22+ 22

which implies that

lim x, 0,0)=0
(m,y)ﬁ(o’o)f( y) # f(0,0)

and therefore f is not continuous at (0,0).

6b By an established theorem, since f is not continuous at (0,0) it cannot be differentiable
at (0,0).

6¢c By definition we have

,(0,0) = lim J(0.0+ h})l — OO0 o) 0.

h—0
Thus, even though f is not differentiable at (0,0), it can have partial derivatives at (0, 0).

7 Here w(t) = f(z,y) with f(z,y) = cos(2z)sin(3y), z = z(t) = t/2 and y = y(t) = t*. By
Chain Rule 1 in notes,

w'(t) = fulz, )2’ () + f,(z,y)y (t) = —sin(22) sin(3y) + 12¢* cos(2x) cos(3y)
= —sin(t) sin(3t*) + 12¢° cos(t) cos(3t*).

8 Here 2(s,t) = f(z,y) with f(z,y) = 2y —2x+3y, v = x(s,t) =sins and y = y(s,t) = tant.
By Chain Rule 2 in notes,

z5(s,t) = fo(x,y)zs(s,t) + fy(z,y)ys(s,t) = (y — 2) cos s + (z + 3)(0) = (tant — 2) cos s,
and

(5,t) = folz,v)xe(s,t) + fy (2, 9)ye(s,t) = (y — 2)(0) + (x + 3)sec* t = (sin s + 3) sec” t.



9a Vf(xz,y) = (fo(z.y), fy(z,y)) = (-92%,2)

9b Direction of steepest ascent is
ViL2) (=92 1
IVF(1,2)]  /(=9)2 +2 ~ V8%

and direction of steepest descent is
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9c Let Cy be given by r(t) = (x(t),y(t)) for t > 0. Then for any t the tangent vector to Cj
at the point (z(t),y(t)), which is r'(¢), must be in the direction of —Vf(z,y) = (92%(t), —2).

Therefore we set

r'(t) = (@'(1), ¥/ (1)) = (92°(1), —2),
from which we obtain the differential equations 2’ = 922 and v’ = —2. The first equation can
be solved by the Method of Separation of Variables:

1 1
— =92 = = dt —dr=|dt = ——=t+K = z(t)=—
a 9:c2 = /9:;;2 . / or T =575

with arbitrary constant K. The equation ¢y’ = —1 easily gives y(t) = —2t + K’ for arbitrary
constant K’. Since C' is given to start at (1,2,3), we must have Cy start at (1,2); that is,
r(0) = (x(0),y(0)) = (1,2). From —1/(9-0+ K) = z(0) = 1 we obtain K = —1, and from
—2(0) + K" = y(0) = 2 we obtain K’ = 2. Therefore an equation for Cj is

1
r(t)—<1_9t, 2—2t>, t>0.

10 First get the unit vector in the direction of (1,+/3):

_(LV3) _ /1 V3
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Now,
Duf(l‘,y) = Vf(i,y) -u = <ex Sjny)ex cosy) . <%’ §> _ e’ SQiny + \/§€$2(:osy’
and so
Dy f(0,7/4) = ¢’ sin(r/4) n V3¢ cos(m /4) _ 1/v2 N V3-1/V/2 _ V2 + \/6
11a We have
_ 2y B 20
fo(z,y) = g Fyla,y) = T
Using

2 = fu(zo,y0)(x — z0) + fy(l’O, Yo)(y — vo) + f (20, %0)



with (zg,y0) = (3,2), we get
z=—4(r—3)+6(y —2)+5,
which simplifies to 4x — 6y + 2 = 5.

11b The tangent plane serves as a linearization L of the function f in a neighborhood of
(3,2), so that L(z,y) ~ f(x,y) for (z,y) near (3,2). From (1a) we have

L(z,y) = —4z + 6y + 5,
and so £(2.95,2.05) ~ L(2.95,2.05) = 5.5.
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At no point does either f, or f, fail to exist, so we search for any point (z,y) for which
fuo(z,y) = fy(x,y) = 0. This yields the system

y—axy=20

r—xy =20
We see we must have # = xy = y. Putting = y into the 1st equation yields # — 22 = 0, which
has solutions z = 0,1. When x = 0 we obtain (from the 1st equation) y = 0; and when z = 1
we obtain (from the 2nd equation) y = 1. Thus we have solutions (0,0) and (1,1), which are
critical points.

From f,,(0,0) = f,,(0,0) =0 and f,,(0,0) =1 we have ®(0,0) = —1 < 0, and therefore f

has a saddle point at (0,0) by the Second Derivative Test.

From f,.(1,1) = f,,(1,1) = —e 2 and f,,(1,1) = 0 we have ®(0,0) = e=* > 0, and
therefore f has a local maximum at (1,1) by the Second Derivative Test.
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In the figure at left above, it is not at all obvious at a glance that there is a local maximum
present, but it is there! The figure at right zooms in on (0,0,0) to at least make the saddle
point clear.

13 Wehave f,(z,y) = =2z, f,(z,y) = =8y, fos(z,y) = =2, fy,(z,y) = =8, foy(z,y) = 0, and
thus ®(z,y) = 16. Setting f.(z,y) = fy(x,y) = 0 yields the system —2z = 0 & —8y = 0, which
gives (0,0) as the only critical point, which is a point that lies in R. Since f,.(0,0) = -2 <0
and ®(0,0) =8 > 0, f has a local maximum at (0, 0).

Along the top side of R we have y = 1, which yields the function fi(z) = 2 — 2? for
x € [—2,2]. Using the Closed Interval Method on f; in [—2,2], the global maximum of f;
occurs at « = 0 (corresponding to point (0,1) for f), and the global minimum at z = +2
(corresponding to points (£2,1) for f).

Along the bottom of R we have y = —1, which yields the function fy(z) = 2 — 2? for
x € [—2,2]. The global maximum of f, occurs at « = 0 (corresponding to point (0, —1) for f),
and the global minimum at x = +2 (corresponding to points (+2, —1) for f).

Along the left side of R we have z = —2, which yields the function f3(y) = 2 — 4y? for
y € [—1,1]. Using the Closed Interval Method on f3 in [—1,1], the global maximum of f3
occurs at y = 0 (corresponding to point (—2,0) for f), and the global minimum at y = %1
(corresponding to points (—2, 1) for f).

Along the right side of R we have # = 2, which yields the function f;(y) = 2 — 4y? for
y € [—1,1]. The global maximum of f; occurs at y = 0 (corresponding to point (2,0) for f),
and the global minimum at y = £1 (corresponding to points (2, 1) for f).

Any point in R that corresponds to a point where any of the functions f; has an extremum
is a point where f itself has an extremum. Thus to find the global extrema of f we evaluate
f at all these points as well as all critical points. We have: f(+2,4+1) = =2, f(0,£1) = 2,
f(£2,0) =2, and f(0,0) = 6.

Therefore f has a global minimum at the points (£2, £1), and a global maximum at (0, 0).

14 By Fubini’s Theorem we have

In3 In2 In3 In2
// T JA = / / " dxdy = / e (/ e” da:) dy
R 1 Jo 1 0
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15 By Fubini’s Theorem we have
1

A/ 7T/2 1 \/ 7T/2 y3
// y? sin(zy?) dA = / / y? sin(zy?) dedy = / {——2 COS(WJQ)} dy
R 0 0 0 Yy 0

w/2 \/ /2 \/ /2
= / —y(cosy® — 1) dy = / ydy — / ycos(y®) dy
0

0 0

T 1 T T 1.,  oqvare 7w 1
:1—5/0 [sin(y?)] dy:Z—i[Sln(y )}0 =1 5

16 In the first quadrant y = 22 and y = 8 —2? intersect at (2,4), which allows us to determine

R so that
28—z 2 1 8—x2
// (x 4+ y)dA = / / (x 4+ y)dydx = / [xy + —yQ} dx
R 0 Ja2 0 27 |0

? 2y, L 22 3 L4
= (8 —2%)+ (8 —a")* —a° — x| dx
; 2 2

2 152
:/ (32+8m—8x2—2x3)d:p:—.
0

17 The order dydx will prove more tractable:

1/4 pvz 1/4 1,2 Nz 1/4 16722
/ / y cos(16mz?)dydx = / L cos(16mz?)| = / z cos(16m2”) de.
0 0 0 2 0 0 2

Now let u = 16mx? to obtain

V4 1 cos(16m?) Tcosu 1 1 [ 1
——dr = — —du = — du = —|sinulj = 0.
/0 2 v /0 v 3o T G ), Cosudu = G inulg

18 The sketch of R in the xy-plane is below. The region
S={(r0):0<r<3and0<60<7}
in the ré-plane is such that T, (S) = R, and therefore

//QxydA // 2(rcos@)(rsinf)rdA = // 2(r cos @) (rsinO)r drdf
//27" cos@sm@drd@-/ cos@sm@{—r] do
0 0

1
_ 8 COSQSiH@d@ = —/ sin(260) df = 0.
2 4,
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19 By definition area is given by

T 2 cos 30 ™1 2 cos 360 P
A= / / rdrdd = / {—rﬂ do = 2/ cos? 36 db
o Jo o L2 1o 0

s 1 . s
:/ 1+ cos66 d@:/ (1 + cos 66)d6 = {0+S”g69] —
0 0

2
0
where along the way we make use of the old trigonometric identity
9 1 + cos2a
cos" o = ————.

Note a critical thing: the entire curve is traced out exactly once as 6 ranges from 0 to 7, so if
you integrate with respect to 6 from 0 to 27 you will get the area times 2!

Y,




