
Math 242 Exam #2 Key (Summer 2013)

1 The function h is a composition of a polynomial function and the natural logarithm function,
and so it is continuous on its domain. We have

Dom(h) = {(x, y) : x2 − 3y > 0} =
{

(x, y) : y < 1
3
x2
}
,

which is the shaded region in R2 illustrated below.
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2 The level curve z = 1 has equation 1 =
√
x2 + 4y2, which implies

x2 +
y2

1/4
= 1,

an ellipse. The level curve z = 2 has equation 2 =
√
x2 + 4y2, which implies

x2

4
+ y2 = 1,

also an ellipse. Graph is below.
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z = 2

3 We have

lim
(x,y)→(2,1)

x2 − 4y2

x− 2y
= lim

(x,y)→(2,1)

(x− 2y)(x+ 2y)

x− 2y
= lim

(x,y)→(2,1)
(x+ 2y) = 2 + 2(1) = 4.

4 First approach (0, 0) on the path (x(t), y(t)) = (t, 0) (i.e. the x-axis), so the limit becomes:

lim
t→0

x(t)y(t) + y3(t)

x2(t) + y2(t)
= lim

t→0

0

t2 + 0
= 0.
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Next, approach (0, 0) on the path (x(t), y(t)) = (t, t) (i.e. the line y = x), so the limit becomes:

lim
t→0

x(t)y(t) + y3(t)

x2(t) + y2(t)
= lim

t→0

t2 + t3

t2 + t2
= lim

t→0

t2(1 + t)

2t2
= lim

t→0

1 + t

2
=

1

2
.

The limits don’t agree, so the original limit cannot exist by the Two-Path Test.

5a We have

gx(x, y) = ln(x2 + y2) +
2x2

x2 + y2
and gy(x, y) =

2xy

x2 + y2
.

5b We have

hz(x, y, z) = −3 sin(x+ 2y + 3z) and hzy(x, y, z) = −6 cos(x+ 2y + 3z).

6a Along the path y = x the limit becomes

lim
(x,x)→(0,0)

− x · x
x2 + x2

= lim
(x,x)→(0,0)

−1

2
= −1

2
,

which implies that
lim

(x,y)→(0,0)
f(x, y) 6= f(0, 0) = 0

and therefore f is not continuous at (0, 0).

6b By an established theorem, since f is not continuous at (0, 0) it cannot be differentiable
at (0, 0).

6c By definition we have

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0
(0) = 0.

Thus, even though f is not differentiable at (0, 0), it can have partial derivatives at (0, 0).

7 Here w(t) = f(x, y) with f(x, y) = cos(2x) sin(3y), x = x(t) = t/2 and y = y(t) = t4. By
Chain Rule 1 in notes,

w′(t) = fx(x, y)x′(t) + fy(x, y)y′(t) = − sin(2x) sin(3y) + 12t3 cos(2x) cos(3y)

= − sin(t) sin(3t4) + 12t3 cos(t) cos(3t4).

8 Here z(s, t) = f(x, y) with f(x, y) = xy−2x+3y, x = x(s, t) = sin s and y = y(s, t) = tan t.
By Chain Rule 2 in notes,

zs(s, t) = fx(x, y)xs(s, t) + fy(x, y)ys(s, t) = (y − 2) cos s+ (x+ 3)(0) = (tan t− 2) cos s,

and

zt(s, t) = fx(x, y)xt(s, t) + fy(x, y)yt(s, t) = (y − 2)(0) + (x+ 3) sec2 t = (sin s+ 3) sec2 t.
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9a ∇f(x, y) = 〈fx(x, y), fy(x, y)〉 = 〈−9x2, 2〉

9b Direction of steepest ascent is

∇f(1, 2)

|∇f(1, 2)|
=

〈−9, 2〉√
(−9)2 + 22

=
1√
85
〈−9, 2〉 ,

and direction of steepest descent is

− 1√
85
〈−9, 2〉 .

9c Let C0 be given by r(t) = 〈x(t), y(t)〉 for t ≥ 0. Then for any t the tangent vector to C0

at the point (x(t), y(t)), which is r′(t), must be in the direction of −∇f(x, y) = 〈9x2(t),−2〉.
Therefore we set

r′(t) = 〈x′(t), y′(t)〉 = 〈9x2(t),−2〉,
from which we obtain the differential equations x′ = 9x2 and y′ = −2. The first equation can
be solved by the Method of Separation of Variables:

dx

dt
= 9x2 ⇒ dx

9x2
= dt ⇒

∫
1

9x2
dx =

∫
dt ⇒ − 1

9x
= t+K ⇒ x(t) = − 1

9t+K
,

with arbitrary constant K. The equation y′ = −1 easily gives y(t) = −2t + K ′ for arbitrary
constant K ′. Since C is given to start at (1, 2, 3), we must have C0 start at (1, 2); that is,
r(0) = 〈x(0), y(0)〉 = 〈1, 2〉. From −1/(9 · 0 + K) = x(0) = 1 we obtain K = −1, and from
−2(0) +K ′ = y(0) = 2 we obtain K ′ = 2. Therefore an equation for C0 is

r(t) =

〈
1

1− 9t
, 2− 2t

〉
, t ≥ 0.

10 First get the unit vector in the direction of 〈1,
√

3〉:

u =
〈1,
√

3〉
2

=

〈
1

2
,

√
3

2

〉
.

Now,

Duf(x, y) = ∇f(x, y) · u = 〈ex sin y, ex cos y〉 ·

〈
1

2
,

√
3

2

〉
=
ex sin y

2
+

√
3ex cos y

2
,

and so

Duf(0, π/4) =
e0 sin(π/4)

2
+

√
3e0 cos(π/4)

2
=

1/
√

2

2
+

√
3 · 1/

√
2

2
=

√
2 +
√

6

4
.

11a We have

fx(x, y) = − 2y

(x− y)2
and fy(x, y) =

2x

(x− y)2

Using
z = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0)
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with (x0, y0) = (3, 2), we get

z = −4(x− 3) + 6(y − 2) + 5,

which simplifies to 4x− 6y + z = 5.

11b The tangent plane serves as a linearization L of the function f in a neighborhood of
(3, 2), so that L(x, y) ≈ f(x, y) for (x, y) near (3, 2). From (1a) we have

L(x, y) = −4x+ 6y + 5,

and so f(2.95, 2.05) ≈ L(2.95, 2.05) = 5.5.
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First we gather our partial derivatives:

fx(x, y) = (y − xy)e−x−y

fy(x, y) = (x− xy)e−x−y

fxx(x, y) = (xy − 2y)e−x−y

fyy(x, y) = (xy − 2x)e−x−y

fxy(x, y) = (1− x+ xy − y)e−x−y

At no point does either fx or fy fail to exist, so we search for any point (x, y) for which
fx(x, y) = fy(x, y) = 0. This yields the system{

y − xy = 0
x − xy = 0

We see we must have x = xy = y. Putting x = y into the 1st equation yields x−x2 = 0, which
has solutions x = 0, 1. When x = 0 we obtain (from the 1st equation) y = 0; and when x = 1
we obtain (from the 2nd equation) y = 1. Thus we have solutions (0, 0) and (1, 1), which are
critical points.

From fxx(0, 0) = fyy(0, 0) = 0 and fxy(0, 0) = 1 we have Φ(0, 0) = −1 < 0, and therefore f
has a saddle point at (0, 0) by the Second Derivative Test.

From fxx(1, 1) = fyy(1, 1) = −e−2 and fxy(1, 1) = 0 we have Φ(0, 0) = e−4 > 0, and
therefore f has a local maximum at (1, 1) by the Second Derivative Test.
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In the figure at left above, it is not at all obvious at a glance that there is a local maximum
present, but it is there! The figure at right zooms in on (0, 0, 0) to at least make the saddle
point clear.

13 We have fx(x, y) = −2x, fy(x, y) = −8y, fxx(x, y) = −2, fyy(x, y) = −8, fxy(x, y) = 0, and
thus Φ(x, y) = 16. Setting fx(x, y) = fy(x, y) = 0 yields the system −2x = 0 & −8y = 0, which
gives (0, 0) as the only critical point, which is a point that lies in R. Since fxx(0, 0) = −2 < 0
and Φ(0, 0) = 8 > 0, f has a local maximum at (0, 0).

Along the top side of R we have y = 1, which yields the function f1(x) = 2 − x2 for
x ∈ [−2, 2]. Using the Closed Interval Method on f1 in [−2, 2], the global maximum of f1
occurs at x = 0 (corresponding to point (0, 1) for f), and the global minimum at x = ±2
(corresponding to points (±2, 1) for f).

Along the bottom of R we have y = −1, which yields the function f2(x) = 2 − x2 for
x ∈ [−2, 2]. The global maximum of f2 occurs at x = 0 (corresponding to point (0,−1) for f),
and the global minimum at x = ±2 (corresponding to points (±2,−1) for f).

Along the left side of R we have x = −2, which yields the function f3(y) = 2 − 4y2 for
y ∈ [−1, 1]. Using the Closed Interval Method on f3 in [−1, 1], the global maximum of f3
occurs at y = 0 (corresponding to point (−2, 0) for f), and the global minimum at y = ±1
(corresponding to points (−2,±1) for f).

Along the right side of R we have x = 2, which yields the function f4(y) = 2 − 4y2 for
y ∈ [−1, 1]. The global maximum of f4 occurs at y = 0 (corresponding to point (2, 0) for f),
and the global minimum at y = ±1 (corresponding to points (2,±1) for f).

Any point in R that corresponds to a point where any of the functions fi has an extremum
is a point where f itself has an extremum. Thus to find the global extrema of f we evaluate
f at all these points as well as all critical points. We have: f(±2,±1) = −2, f(0,±1) = 2,
f(±2, 0) = 2, and f(0, 0) = 6.

Therefore f has a global minimum at the points (±2,±1), and a global maximum at (0, 0).
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14 By Fubini’s Theorem we have∫∫
R

ex+2y dA =

∫ ln 3

1

∫ ln 2

0

ex+2y dxdy =

∫ ln 3

1

e2y
(∫ ln 2

0

ex dx

)
dy
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=

∫ ln 3

1

e2y [ex]ln 2
0 dy =

∫ ln 3

1

e2y dy =
1

2

[
e2y
]ln 3

1
=

1

2
(9− e2) =

9− e2

2
.

15 By Fubini’s Theorem we have∫∫
R

y3 sin(xy2) dA =

∫ √π/2

0

∫ 1

0

y3 sin(xy2) dxdy =

∫ √π/2

0

[
−y

3

y2
cos(xy2)

]1
0

dy

=

∫ √π/2

0

−y(cos y2 − 1) dy =

∫ √π/2

0

y dy −
∫ √π/2

0

y cos(y2) dy

=
π

4
− 1

2

∫ √π/2

0

[
sin(y2)

]′
dy =

π

4
− 1

2

[
sin(y2)

]√π/2

0
=
π

4
− 1

2
.

16 In the first quadrant y = x2 and y = 8−x2 intersect at (2, 4), which allows us to determine
R so that ∫∫

R

(x+ y)dA =

∫ 2

0

∫ 8−x2

x2
(x+ y)dydx =

∫ 2

0

[
xy +

1

2
y2
]8−x2
x2

dx

=

∫ 2

0

[
x(8− x2) +

1

2
(8− x2)2 − x3 − 1

2
x4
]
dx

=

∫ 2

0

(
32 + 8x− 8x2 − 2x3

)
dx =

152

3
.

17 The order dydx will prove more tractable:∫ 1/4

0

∫ √x
0

y cos(16πx2)dydx =

∫ 1/4

0

[
y2

2
cos(16πx2)

]√x
0

=

∫ 1/4

0

x cos(16πx2)

2
dx.

Now let u = 16πx2 to obtain∫ 1/4

0

x cos(16πx2)

2
dx =

∫ π

0

cosu

x
· 1

32π
du =

1

64π

∫ π

0

cosu du =
1

64π
[sinu]π0 = 0.

18 The sketch of R in the xy-plane is below. The region

S = {(r, θ) : 0 ≤ r ≤ 3 and 0 ≤ θ ≤ π}
in the rθ-plane is such that Tpol(S) = R, and therefore∫∫

R

2xy dA =

∫∫
S

2(r cos θ)(r sin θ)r dA =

∫ π

0

∫ 3

0

2(r cos θ)(r sin θ)r drdθ

=

∫ π

0

∫ 3

0

2r3 cos θ sin θ drdθ =

∫ π

0

cos θ sin θ

[
1

2
r4
]3
0

dθ

=
81

2

∫ π

0

cos θ sin θ dθ =
81

4

∫ π

0

sin(2θ) dθ = 0.



7

x

y

33−3

r

θ

19 By definition area is given by

A =

∫ π

0

∫ 2 cos 3θ

0

r drdθ =

∫ π

0

[
1

2
r2
]2 cos 3θ
0

dθ = 2

∫ π

0

cos2 3θ dθ

=

∫ π

0

1 + cos 6θ

2
dθ =

∫ π

0

(1 + cos 6θ)dθ =

[
θ +

sin 6θ

6

]π
0

= π,

where along the way we make use of the old trigonometric identity

cos2 α =
1 + cos 2α

2
.

Note a critical thing: the entire curve is traced out exactly once as θ ranges from 0 to π, so if
you integrate with respect to θ from 0 to 2π you will get the area times 2!
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