Math 242 Exam \#4 Key (Fall 2018)

1 For any $(x, y, z) \in D$ we have $0 \leq z \leq 9-x^{2}$. We can evaluate $\iiint_{D} d V$ in the order $d z d y d x$ (other orders are possible). See the figure below.

To determine the limits of integration for y and x, project D onto the $x y$-plane to obtain the region R shown at right in the figure. There it can be seen that if $(x, y) \in R$, then $0 \leq y \leq 2-x$ for $0 \leq x \leq 2$, and so the limits of integration for y will be 0 and $2-x$, and the limits of integration for x will be 0 and 2 . We obtain

$$
\begin{aligned}
\mathcal{V}(D) & =\iiint_{D} d V=\int_{0}^{2} \int_{0}^{2-x} \int_{0}^{9-x^{2}} d z d y d x \\
& =\int_{0}^{2} \int_{0}^{2-x}\left(9-x^{2}\right) d y d x=\int_{0}^{2}\left[9 y-x^{2} y\right]_{0}^{2-x} d x \\
& =\int_{0}^{2}\left[9(2-x)-x^{2}(2-x)\right] d x=\left[\frac{1}{4} x^{4}-\frac{2}{3} x^{3}-\frac{9}{2} x^{2}+18 x\right]_{0}^{2}=\frac{50}{3} .
\end{aligned}
$$

It can be instructive to try determining the volume of D by integrating in the orders $d z d x d y$ and $d y d z d x$.

2 On the $y z$-plane the region of integration is

$$
R=\left\{(y, z): 0 \leq z \leq \sqrt{4-y^{2}},-2 \leq y \leq 2\right\}
$$

the top half of a circular disc of radius 2 :

This region is also expressible as

$$
R=\left\{(y, z):-\sqrt{4-z^{2}} \leq y \leq \sqrt{4-z^{2}}, 0 \leq z \leq 2\right\}
$$

and so the integral becomes

$$
\int_{0}^{1} \int_{0}^{2} \int_{-\sqrt{4-z^{2}}}^{\sqrt{4-z^{2}}} d y d z d x
$$

To evaluate the integral let $z=2 \sin \theta$, so that $d z=2 \cos \theta d \theta$, and we obtain

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2} \int_{-\sqrt{4-z^{2}}}^{\sqrt{4-z^{2}}} d y d z d x & =\int_{0}^{1}\left(\int_{0}^{\pi / 2} 2 \sqrt{4-4 \sin ^{2} \theta} \cdot 2 \cos \theta d \theta\right) d x \\
& =\int_{0}^{1}\left(8 \int_{0}^{\pi / 2} \cos ^{2} \theta d \theta\right) d x=8 \int_{0}^{1} \int_{0}^{\pi / 2} \frac{1+\cos 2 \theta}{2} d \theta d x \\
& =8 \int_{0}^{1}\left[\frac{1}{2} \theta+\frac{\sin 2 \theta}{4}\right]_{0}^{\pi / 2} d x=2 \pi
\end{aligned}
$$

3 The cone and sphere intersect at (x, y, z) where $x^{2}+y^{2}=z^{2}=2-x^{2}-y^{2}$, which is a curve in space that projects onto the $x y$-plane as the unit circle $x^{2}+y^{2}=1$. In cylindrical coordinates the region of integration D is thus

$$
D=\left\{(r, \theta, z): 0 \leq \theta \leq 2 \pi, \quad 0 \leq r \leq 1, \quad r \leq z \leq \sqrt{2-r^{2}}\right\}
$$

(Note that all (r, θ) such that $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 1$ covers the unit disc, whereas $z=r$ is the cone while $z=\sqrt{2-r^{2}}$ is the sphere.) The volume is

$$
V=\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} r d z d r d \theta=\frac{4 \pi}{3}(\sqrt{2}-1)
$$

4 In spherical coordinates the spheres are $\rho=1$ and $\rho=4$, and so the region D is

$$
D=\{(\rho, \varphi, \theta): 0 \leq \theta \leq 2 \pi, \quad 0 \leq \varphi \leq \pi, \quad 1 \leq \rho \leq 4\} .
$$

Now,

$$
\begin{aligned}
\iiint_{D}\left(x^{2}+y^{2}\right) d V & =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{4}\left[(\rho \sin \varphi \cos \theta)^{2}+(\rho \sin \varphi \sin \theta)^{2}\right] \rho^{2} \sin \varphi d \rho d \varphi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{1}^{4} \rho^{4} \sin ^{3} \varphi d \rho d \varphi d \theta=\frac{2728 \pi}{5}
\end{aligned}
$$

5 Parametrization for ellipse:

$$
\mathbf{r}(t)=\langle 2 \cos t, \sin t\rangle, \quad t \in[0,2 \pi)
$$

This covers the ellipse precisely: for each point on the ellipse there is precisely one value of $t \in[0,2 \pi)$ such that $\mathbf{r}(t)$ is the position vector of that point. For \mathbf{F} to be normal to the ellipse at the point $\mathbf{r}(t)$ means $\mathbf{r}^{\prime}(t) \cdot \mathbf{F}(\mathbf{r}(t))=0$, which implies $\cos t \sin t=0$. Solutions are $t=0, \pi / 2, \pi, 3 \pi / 2$, which correspond to points $(2,0),(0,1),(-2,0),(0,-1)$.

Points where \mathbf{F} is tangential to the ellipse are points $\mathbf{r}(t)$ where $\mathbf{F}(\mathbf{r}(t))$ is parallel to $\mathbf{r}^{\prime}(t)$; that is, there exists some constant $k \neq 0$ such that $\mathbf{r}^{\prime}(t)=k \mathbf{F}(\mathbf{r}(t))$. This requires that

$$
\langle-2 \sin t, \cos t\rangle=k\langle 4 \cos t, \sin t\rangle
$$

which is only satisfied if $4 k^{2}=-2$. There is no solution, so the vector field is never tangent to the ellipse.

6a A fine parametrization would be

$$
\mathbf{r}(t)=\langle 0,-3,2\rangle(1-t)+\langle 1,-7,4\rangle t=\langle t,-4 t-3,2 t+2\rangle, \quad t \in[0,1] .
$$

6b We have $\mathbf{r}^{\prime}(t)=\langle 1,-4,2\rangle$, so that $\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{21}$. Now,

$$
\begin{aligned}
\int_{C}\left(x z-y^{2}\right) d s & =\sqrt{21} \int_{0}^{1}\left[t(2 t+2)-(-4 t-3)^{2}\right] d t \\
& =-\sqrt{21} \int_{0}^{1}\left(14 t^{2}+22 t+9\right) d t=-\frac{74 \sqrt{21}}{3}
\end{aligned}
$$

7 Making the substitution $u=t^{2}-1$ along the way, we have

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2} \mathbf{F}\left(t^{2}, t^{3}\right) \cdot\left\langle 2 t, 3 t^{2}\right\rangle d t \\
& =\int_{0}^{2}\left\langle e^{t^{2}-1}, t^{5}\right\rangle \cdot\left\langle 2 t, 3 t^{2}\right\rangle d t=\int_{0}^{2}\left(2 t e^{t^{2}-1}+3 t^{7}\right) d t \\
& =\int_{0}^{2} 2 t e^{t^{2}-1} d t+\int_{0}^{2} 3 t^{7} d t=\int_{-1}^{3} e^{u} d u+\frac{3}{8}\left[t^{8}\right]_{0}^{2}=e^{3}-\frac{1}{e}+96
\end{aligned}
$$

8 Here we have $x(t)=2 \cos t$ and $y(t)=2 \sin t$, so $x^{\prime}(t)=-2 \sin t$ and $y^{\prime}(t)=2 \cos t$, and then

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{n} & =\int_{0}^{2 \pi}\left[f(\mathbf{r}(t)) y^{\prime}(t)-g(\mathbf{r}(t)) x^{\prime}(t)\right] d t \\
& =\int_{0}^{2 \pi}[f(2 \cos t, 2 \sin t)(2 \cos t)-g(2 \cos t, 2 \sin t)(-2 \sin t)] d t \\
& =\int_{0}^{2 \pi}[(2 \sin t-2 \cos t)(2 \cos t)-(2 \cos t)(-2 \sin t)] d t \\
& =4 \int_{0}^{2 \pi} 2 \cos t \sin t d t-4 \int_{0}^{2 \pi} \cos ^{2} t d t \\
& =\int_{0}^{2 \pi} \sin (2 t) d t-4 \int_{0}^{2 \pi} \frac{1+\cos (2 t)}{2} d t \\
& =4\left[-\frac{1}{2} \cos (2 t)\right]_{0}^{2 \pi}-2\left[t+\frac{1}{2} \sin (2 t)\right]_{0}^{2 \pi} \\
& =4 \cdot 0-2 \cdot 2 \pi=-4 \pi
\end{aligned}
$$

Thus there is a net flux of 4π into the region enclosed by C.

