
Math 242 Exam #4 Key (Fall 2018)

1 For any (x, y, z) ∈ D we have 0 ≤ z ≤ 9−x2. We can evaluate
˝

D
dV in the order dzdydx

(other orders are possible). See the figure below.
To determine the limits of integration for y and x, project D onto the xy-plane to obtain

the region R shown at right in the figure. There it can be seen that if (x, y) ∈ R, then
0 ≤ y ≤ 2− x for 0 ≤ x ≤ 2, and so the limits of integration for y will be 0 and 2− x, and the
limits of integration for x will be 0 and 2. We obtain

V(D) =

˚
D

dV =

ˆ 2

0

ˆ 2−x

0

ˆ 9−x2

0

dzdydx

=

ˆ 2

0

ˆ 2−x

0

(9− x2) dydx =

ˆ 2

0

[
9y − x2y

]2−x
0

dx

=

ˆ 2

0

[
9(2− x)− x2(2− x)

]
dx =

[
1

4
x4 − 2

3
x3 − 9

2
x2 + 18x

]2
0

=
50

3
.

It can be instructive to try determining the volume of D by integrating in the orders dzdxdy
and dydzdx.
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2 On the yz-plane the region of integration is

R =
{

(y, z) : 0 ≤ z ≤
√

4− y2, −2 ≤ y ≤ 2
}
,

the top half of a circular disc of radius 2:
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This region is also expressible as

R =
{

(y, z) : −
√

4− z2 ≤ y ≤
√

4− z2, 0 ≤ z ≤ 2
}
,



2

and so the integral becomes ˆ 1

0

ˆ 2

0

ˆ √4−z2
−
√
4−z2

dydzdx.

To evaluate the integral let z = 2 sin θ, so that dz = 2 cos θ dθ, and we obtain
ˆ 1

0

ˆ 2

0

ˆ √4−z2
−
√
4−z2

dydzdx =

ˆ 1

0

(ˆ π/2

0

2
√

4− 4 sin2 θ · 2 cos θ dθ

)
dx

=

ˆ 1

0

(
8

ˆ π/2

0

cos2 θ dθ

)
dx = 8

ˆ 1

0

ˆ π/2

0

1 + cos 2θ

2
dθ dx

= 8

ˆ 1

0

[
1

2
θ +

sin 2θ

4

]π/2
0

dx = 2π.

3 The cone and sphere intersect at (x, y, z) where x2 + y2 = z2 = 2 − x2 − y2, which is a
curve in space that projects onto the xy-plane as the unit circle x2 + y2 = 1. In cylindrical
coordinates the region of integration D is thus

D =
{

(r, θ, z) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, r ≤ z ≤
√

2− r2
}
.

(Note that all (r, θ) such that 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1 covers the unit disc, whereas z = r is
the cone while z =

√
2− r2 is the sphere.) The volume is

V =

˚
D

dV =

ˆ 2π

0

ˆ 1

0

ˆ √2−r2
r

r dzdrdθ =
4π

3

(√
2− 1

)
.

4 In spherical coordinates the spheres are ρ = 1 and ρ = 4, and so the region D is

D =
{

(ρ, ϕ, θ) : 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, 1 ≤ ρ ≤ 4
}
.

Now, ˚
D

(x2 + y2) dV =

ˆ 2π

0

ˆ π

0

ˆ 4

1

[
(ρ sinϕ cos θ)2 + (ρ sinϕ sin θ)2

]
ρ2 sinϕdρdϕdθ

=

ˆ 2π

0

ˆ π

0

ˆ 4

1

ρ4 sin3 ϕdρdϕdθ =
2728π

5
.

5 Parametrization for ellipse:

r(t) = 〈2 cos t, sin t〉, t ∈ [0, 2π).

This covers the ellipse precisely: for each point on the ellipse there is precisely one value of
t ∈ [0, 2π) such that r(t) is the position vector of that point. For F to be normal to the
ellipse at the point r(t) means r′(t) · F(r(t)) = 0, which implies cos t sin t = 0. Solutions are
t = 0, π/2, π, 3π/2, which correspond to points (2, 0), (0, 1), (−2, 0), (0,−1).

Points where F is tangential to the ellipse are points r(t) where F(r(t)) is parallel to r′(t);
that is, there exists some constant k 6= 0 such that r′(t) = kF(r(t)). This requires that

〈−2 sin t, cos t〉 = k〈4 cos t, sin t〉,
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which is only satisfied if 4k2 = −2. There is no solution, so the vector field is never tangent to
the ellipse.

6a A fine parametrization would be

r(t) = 〈0,−3, 2〉(1− t) + 〈1,−7, 4〉t = 〈t,−4t− 3, 2t+ 2〉, t ∈ [0, 1].

6b We have r′(t) = 〈1,−4, 2〉, so that ‖r′(t)‖ =
√

21. Now,ˆ
C

(xz − y2) ds =
√

21

ˆ 1

0

[
t(2t+ 2)− (−4t− 3)2

]
dt

= −
√

21

ˆ 1

0

(14t2 + 22t+ 9) dt = −74
√

21

3
.

7 Making the substitution u = t2 − 1 along the way, we haveˆ
C

F · dr =

ˆ 2

0

F(r(t)) · r′(t) dt =

ˆ 2

0

F(t2, t3) · 〈2t, 3t2〉 dt

=

ˆ 2

0

〈et2−1, t5〉 · 〈2t, 3t2〉 dt =

ˆ 2

0

(2tet
2−1 + 3t7) dt

=

ˆ 2

0

2tet
2−1 dt+

ˆ 2

0

3t7 dt =

ˆ 3

−1
eu du+

3

8

[
t8
]2
0

= e3 − 1

e
+ 96.

8 Here we have x(t) = 2 cos t and y(t) = 2 sin t, so x′(t) = −2 sin t and y′(t) = 2 cos t, and
then ˆ

C

F · n =

ˆ 2π

0

[
f(r(t))y′(t)− g(r(t))x′(t)

]
dt

=

ˆ 2π

0

[
f(2 cos t, 2 sin t)(2 cos t)− g(2 cos t, 2 sin t)(−2 sin t)

]
dt

=

ˆ 2π

0

[
(2 sin t− 2 cos t)(2 cos t)− (2 cos t)(−2 sin t)

]
dt

= 4

ˆ 2π

0

2 cos t sin t dt− 4

ˆ 2π

0

cos2 t dt

=

ˆ 2π

0

sin(2t) dt− 4

ˆ 2π

0

1 + cos(2t)

2
dt

= 4

[
−1

2
cos(2t)

]2π
0

− 2

[
t+

1

2
sin(2t)

]2π
0

= 4 · 0− 2 · 2π = −4π.

Thus there is a net flux of 4π into the region enclosed by C.


