1 For any $(x, y, z) \in D$ we have $0 \le z \le 9 - x^2$. We can evaluate $\iiint_D dV$ in the order dz dy dx (other orders are possible). See the figure below.

To determine the limits of integration for y and x, project D onto the xy-plane to obtain the region R shown at right in the figure. There it can be seen that if $(x, y) \in R$, then $0 \le y \le 2 - x$ for $0 \le x \le 2$, and so the limits of integration for y will be 0 and 2 - x, and the limits of integration for x will be 0 and 2. We obtain

$$\mathcal{V}(D) = \iiint_D dV = \int_0^2 \int_0^{2-x} \int_0^{9-x^2} dz \, dy \, dx$$

= $\int_0^2 \int_0^{2-x} (9-x^2) \, dy \, dx = \int_0^2 \left[9y - x^2y\right]_0^{2-x} \, dx$
= $\int_0^2 \left[9(2-x) - x^2(2-x)\right] \, dx = \left[\frac{1}{4}x^4 - \frac{2}{3}x^3 - \frac{9}{2}x^2 + 18x\right]_0^2 = \frac{50}{3}.$

It can be instructive to try determining the volume of D by integrating in the orders dz dx dy and dy dz dx.

2 On the yz-plane the region of integration is

$$R = \left\{ (y, z) : 0 \le z \le \sqrt{4 - y^2}, \ -2 \le y \le 2 \right\},\$$

the top half of a circular disc of radius 2:

This region is also expressible as

$$R = \big\{ (y, z) : -\sqrt{4 - z^2} \le y \le \sqrt{4 - z^2}, \ 0 \le z \le 2 \big\},\$$

and so the integral becomes

$$\int_0^1 \int_0^2 \int_{-\sqrt{4-z^2}}^{\sqrt{4-z^2}} dy \, dz \, dx.$$

To evaluate the integral let $z = 2\sin\theta$, so that $dz = 2\cos\theta d\theta$, and we obtain

$$\int_{0}^{1} \int_{0}^{2} \int_{-\sqrt{4-z^{2}}}^{\sqrt{4-z^{2}}} dy \, dz \, dx = \int_{0}^{1} \left(\int_{0}^{\pi/2} 2\sqrt{4-4\sin^{2}\theta} \cdot 2\cos\theta \, d\theta \right) dx$$
$$= \int_{0}^{1} \left(8 \int_{0}^{\pi/2} \cos^{2}\theta \, d\theta \right) dx = 8 \int_{0}^{1} \int_{0}^{\pi/2} \frac{1+\cos 2\theta}{2} \, d\theta \, dx$$
$$= 8 \int_{0}^{1} \left[\frac{1}{2}\theta + \frac{\sin 2\theta}{4} \right]_{0}^{\pi/2} \, dx = 2\pi.$$

3 The cone and sphere intersect at (x, y, z) where $x^2 + y^2 = z^2 = 2 - x^2 - y^2$, which is a curve in space that projects onto the *xy*-plane as the unit circle $x^2 + y^2 = 1$. In cylindrical coordinates the region of integration D is thus

$$D = \{ (r, \theta, z) : 0 \le \theta \le 2\pi, \ 0 \le r \le 1, \ r \le z \le \sqrt{2 - r^2} \}.$$

(Note that all (r, θ) such that $0 \le \theta \le 2\pi$ and $0 \le r \le 1$ covers the unit disc, whereas z = r is the cone while $z = \sqrt{2 - r^2}$ is the sphere.) The volume is

$$V = \iiint_D dV = \int_0^{2\pi} \int_0^1 \int_r^{\sqrt{2-r^2}} r \, dz \, dr \, d\theta = \frac{4\pi}{3} \left(\sqrt{2} - 1\right).$$

4 In spherical coordinates the spheres are $\rho = 1$ and $\rho = 4$, and so the region D is

$$D = \{ (\rho, \varphi, \theta) : 0 \le \theta \le 2\pi, \ 0 \le \varphi \le \pi, \ 1 \le \rho \le 4 \}.$$

Now,

$$\iiint_D (x^2 + y^2) \, dV = \int_0^{2\pi} \int_0^{\pi} \int_1^4 \left[(\rho \sin \varphi \cos \theta)^2 + (\rho \sin \varphi \sin \theta)^2 \right] \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$$
$$= \int_0^{2\pi} \int_0^{\pi} \int_1^4 \rho^4 \sin^3 \varphi \, d\rho \, d\varphi \, d\theta = \frac{2728\pi}{5}.$$

5 Parametrization for ellipse:

$$\mathbf{r}(t) = \langle 2\cos t, \sin t \rangle, \quad t \in [0, 2\pi).$$

This covers the ellipse precisely: for each point on the ellipse there is precisely one value of $t \in [0, 2\pi)$ such that $\mathbf{r}(t)$ is the position vector of that point. For \mathbf{F} to be normal to the ellipse at the point $\mathbf{r}(t)$ means $\mathbf{r}'(t) \cdot \mathbf{F}(\mathbf{r}(t)) = 0$, which implies $\cos t \sin t = 0$. Solutions are $t = 0, \pi/2, \pi, 3\pi/2$, which correspond to points (2, 0), (0, 1), (-2, 0), (0, -1).

Points where **F** is tangential to the ellipse are points $\mathbf{r}(t)$ where $\mathbf{F}(\mathbf{r}(t))$ is parallel to $\mathbf{r}'(t)$; that is, there exists some constant $k \neq 0$ such that $\mathbf{r}'(t) = k\mathbf{F}(\mathbf{r}(t))$. This requires that

$$\langle -2\sin t, \cos t \rangle = k \langle 4\cos t, \sin t \rangle,$$

which is only satisfied if $4k^2 = -2$. There is no solution, so the vector field is never tangent to the ellipse.

6a A fine parametrization would be

$$\mathbf{r}(t) = \langle 0, -3, 2 \rangle (1-t) + \langle 1, -7, 4 \rangle t = \langle t, -4t - 3, 2t + 2 \rangle, \quad t \in [0, 1].$$

6b We have $\mathbf{r}'(t) = \langle 1, -4, 2 \rangle$, so that $\|\mathbf{r}'(t)\| = \sqrt{21}$. Now, $\int_C (xz - y^2) \, ds = \sqrt{21} \int_0^1 \left[t(2t+2) - (-4t-3)^2 \right] dt$ $= -\sqrt{21} \int_0^1 (14t^2 + 22t + 9) \, dt = -\frac{74\sqrt{21}}{3}.$

7 Making the substitution $u = t^2 - 1$ along the way, we have

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{0}^{2} \mathbf{F}(t^{2}, t^{3}) \cdot \langle 2t, 3t^{2} \rangle dt$$
$$= \int_{0}^{2} \langle e^{t^{2}-1}, t^{5} \rangle \cdot \langle 2t, 3t^{2} \rangle dt = \int_{0}^{2} (2te^{t^{2}-1} + 3t^{7}) dt$$
$$= \int_{0}^{2} 2te^{t^{2}-1} dt + \int_{0}^{2} 3t^{7} dt = \int_{-1}^{3} e^{u} du + \frac{3}{8} [t^{8}]_{0}^{2} = e^{3} - \frac{1}{e} + 96.$$

8 Here we have $x(t) = 2\cos t$ and $y(t) = 2\sin t$, so $x'(t) = -2\sin t$ and $y'(t) = 2\cos t$, and then

$$\begin{split} \int_{C} \mathbf{F} \cdot \mathbf{n} &= \int_{0}^{2\pi} \left[f(\mathbf{r}(t)) y'(t) - g(\mathbf{r}(t)) x'(t) \right] dt \\ &= \int_{0}^{2\pi} \left[f(2\cos t, 2\sin t) (2\cos t) - g(2\cos t, 2\sin t) (-2\sin t) \right] dt \\ &= \int_{0}^{2\pi} \left[(2\sin t - 2\cos t) (2\cos t) - (2\cos t) (-2\sin t) \right] dt \\ &= 4 \int_{0}^{2\pi} 2\cos t \sin t \, dt - 4 \int_{0}^{2\pi} \cos^{2} t \, dt \\ &= \int_{0}^{2\pi} \sin(2t) \, dt - 4 \int_{0}^{2\pi} \frac{1 + \cos(2t)}{2} \, dt \\ &= 4 \left[-\frac{1}{2}\cos(2t) \right]_{0}^{2\pi} - 2 \left[t + \frac{1}{2}\sin(2t) \right]_{0}^{2\pi} \\ &= 4 \cdot 0 - 2 \cdot 2\pi = -4\pi. \end{split}$$

Thus there is a net flux of 4π into the region enclosed by C.