MATH 242 ExaM #4 KEy (FALL 2018)

1 Forany (z,y,2) € D we have 0 < z < 9—x*. We can evaluate [[[, dV in the order dzdydx
(other orders are possible). See the figure below.

To determine the limits of integration for y and x, project D onto the zy-plane to obtain
the region R shown at right in the figure. There it can be seen that if (z,y) € R, then
0<y<2—xfor 0 <z <2 and so the limits of integration for y will be 0 and 2 — x, and the
limits of integration for x will be 0 and 2. We obtain
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It can be instructive to try determining the volume of D by integrating in the orders dzdxdy
and dydzdzx.
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2 On the yz-plane the region of integration is
R:{(y,z):ngg 4—y2 —2<y<2},

the top half of a circular disc of radius 2:

This region is also expressible as

R:{(y,z):—\/4—z2§y§\/4_22’ OSZSZ},



and so the integral becomes

/// dydzdx.
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To evaluate the integral let z = 2sin f, so that dz = 2 cosf dfl, and we obtain
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3 The cone and sphere intersect at (z,y,2) where 22 + y> = 22 = 2 — 2% — y?, which is a
curve in space that projects onto the xy-plane as the unit circle 22 + y? = 1. In cylindrical
coordinates the region of integration D is thus

D={(r6,2z):0<0<2m 0<r<1, r<z<v2-r?}.

(Note that all (r, ) such that 0 < 6 <27 and 0 < <1 covers the unit disc, whereas z = r is
the cone while z = /2 — r2 is the sphere.) The volume is

///dv /ZW//zrrdzdrdH— “(V2-1).

4 In spherical coordinates the spheres are p = 1 and p = 4, and so the region D is

Dz{(p,gp,@):0§9§27r, 0<p<m, 1§p§4}.
Now
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5 Parametrization for ellipse:
r(t) = (2cost,sint), t€|0,2m).

This covers the ellipse precisely: for each point on the ellipse there is precisely one value of

€ [0,27) such that r(¢) is the position vector of that point. For F to be normal to the
ellipse at the point r(t) means r'(t) - F(r(t)) = 0, which implies costsint = 0. Solutions are
t =0,7/2,m,3mw/2, which correspond to points (2,0), (0,1), (—=2,0), (0, —1).

Points where F is tangential to the ellipse are points r(¢) where F(r(t)) is parallel to r'();

that is, there exists some constant k # 0 such that 1'(¢) = kF(r(t)). This requires that

(—2sint,cost) = k(4 cost,sint),
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which is only satisfied if 4k? = —2. There is no solution, so the vector field is never tangent to
the ellipse.

6a A fine parametrization would be
r(t) =(0,-3,2)(1 —t)+ (1,-7,4)t = (t,—4t — 3,2t + 2), t€[0,1].

6b We have r'(t) = (1, —4,2), so that ||r(t)|| = v/21. Now,
1
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7 Making the substitution u = t* — 1 along the way, we have
2 2
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8 Here we have z(t) = 2cost and y(t) = 2sint, so 2/(t) = —2sint and /() = 2cost, and

then
[Fon= / ¥ — glr() (0] de

f(2cost,2sint)(2cost) — g(2cost,2sint)(—2sint)|dt

[(2 sint — 2cost)(2cost) — (2cost)(—2sint)]dt
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=4-0—-2-21 = —4m.

Thus there is a net flux of 47 into the region enclosed by C.
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