
Math 242 Exam #3 Key (Fall 2018)

1a We have

fx(x, y) = (y2 + xy + 1)exy and fy(x, y) = (x2 + xy + 1)exy

Using
z = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) + f(x0, y0)

with (x0, y0) = (2, 0), we get

z = fx(2, 0)(x− 2) + fy(2, 0)(y − 0) + f(2, 0) = (x− 2) + 5y + 2,

which simplifies to x+ 5y − z = 0.

1b The tangent plane serves as a linearization L of the function f in a neighborhood of (2, 0),
so that z = f(x, y) ≈ L(x, y) for (x, y) near (2, 0). From (1a) we have z = x+ 5y, so that

L(x, y) = x+ 5y,

and hence z = f(1.95, 0.05) ≈ L(1.95, 0.05) = 1.95 + 5(0.05) = 2.2.

2 S is given by F (x, y, z) = 0, where

F (x, y, z) = x2 + y2 − z2 − 2x+ 2y + 3.

So Fx(x, y, z) = 2x − 2, Fy(x, y, z) = 2y + 2, and Fz(x, y, z) = −2z. A tangent plane to S at
(a, b, c) ∈ S is given by

∇F · 〈x− a, y − b, z − c〉 = 0 ⇒ 〈2a− 2, 2b+ 2,−2c〉 · 〈x− a, y − b, z − c〉 = 0,

which becomes
(a− 1)x+ (b+ 1)y − cz = a(a− 1) + b(b+ 1)− c2.

A horizontal plane is a plane with equation z = k, where k is some constant. Thus we need
a = 1 and b = −1. Then

a2 + b2 − c2 − 2a+ 2b+ 3 = 0 ⇒ c2 = 1 ⇒ c = ±1.

Therefore the two points on S where the tangent plane is horizontal are (1,−1, 1) and (1,−1,−1).

3 First we gather our partial derivatives:

fx(x, y) = −3x2 − 6x

fy(x, y) = −3y2 + 6y

fxx(x, y) = −6x− 6

fyy(x, y) = −6y + 6

fxy(x, y) = 0

At no point does either fx or fy fail to exist, so we search for any point (x, y) for which
fx(x, y) = fy(x, y) = 0. This yields the system{

3x2 + 6x = 0
3y2 − 6y = 0
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The system has solutions (0, 0), (0, 2), (−2, 0), and (−2, 2). We construct a table:

(x, y) fxx fyy fxy Φ Conclusion

(0, 0) −6 6 0 −36 Saddle Point

(0, 2) −6 −6 0 36 Local Maximum

(−2, 0) 6 6 0 36 Local Minimum

(−2, 2) 6 −6 0 −36 Saddle Point

Below is a graph of a part of the surface containing the points of interest.
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5 We have
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7 The sketch of R in the xy-plane is below. The region

S = {(r, θ) : 0 ≤ r ≤ 5 and π ≤ θ ≤ 2π}
in the rθ-plane is such that Tpol(S) = R, and therefore¨
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8 The height function is

h(x) = (27− x2 − 2y2)− (2x2 + y2) = 27− 3x2 − 3y2,

while the region of integration R will be the region in the xy-plane enclosed by the curve that
is the projection onto z = 0 of the curve of intersection of the paraboloids. This curve is given
by

2x2 + y2 = 27− x2 − 2y2,

or x2 + y2 = 9, which is a circle with center (0, 0) and radius 3, and so in polar coordinates

R = {(r, θ) : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3}.
The volume of the solid is

V =

¨
R

h =

ˆ 2π

0
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0

(27− 3r2 cos2 θ − 3r2 sin2 θ)r drdθ
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