Math 242 Exam \#3 Key (Fall 2018)

1a We have

$$
f_{x}(x, y)=\left(y^{2}+x y+1\right) e^{x y} \quad \text { and } \quad f_{y}(x, y)=\left(x^{2}+x y+1\right) e^{x y}
$$

Using

$$
z=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+f\left(x_{0}, y_{0}\right)
$$

with $\left(x_{0}, y_{0}\right)=(2,0)$, we get

$$
z=f_{x}(2,0)(x-2)+f_{y}(2,0)(y-0)+f(2,0)=(x-2)+5 y+2
$$

which simplifies to $x+5 y-z=0$.

1b The tangent plane serves as a linearization L of the function f in a neighborhood of $(2,0)$, so that $z=f(x, y) \approx L(x, y)$ for (x, y) near $(2,0)$. From (1a) we have $z=x+5 y$, so that

$$
L(x, y)=x+5 y
$$

and hence $z=f(1.95,0.05) \approx L(1.95,0.05)=1.95+5(0.05)=2.2$.
$2 S$ is given by $F(x, y, z)=0$, where

$$
F(x, y, z)=x^{2}+y^{2}-z^{2}-2 x+2 y+3 .
$$

So $F_{x}(x, y, z)=2 x-2, F_{y}(x, y, z)=2 y+2$, and $F_{z}(x, y, z)=-2 z$. A tangent plane to S at $(a, b, c) \in S$ is given by

$$
\nabla F \cdot\langle x-a, y-b, z-c\rangle=0 \Rightarrow\langle 2 a-2,2 b+2,-2 c\rangle \cdot\langle x-a, y-b, z-c\rangle=0,
$$

which becomes

$$
(a-1) x+(b+1) y-c z=a(a-1)+b(b+1)-c^{2} .
$$

A horizontal plane is a plane with equation $z=k$, where k is some constant. Thus we need $a=1$ and $b=-1$. Then

$$
a^{2}+b^{2}-c^{2}-2 a+2 b+3=0 \Rightarrow c^{2}=1 \quad \Rightarrow \quad c= \pm 1 .
$$

Therefore the two points on S where the tangent plane is horizontal are $(1,-1,1)$ and $(1,-1,-1)$.

3 First we gather our partial derivatives:

$$
\begin{aligned}
f_{x}(x, y) & =-3 x^{2}-6 x \\
f_{y}(x, y) & =-3 y^{2}+6 y \\
f_{x x}(x, y) & =-6 x-6 \\
f_{y y}(x, y) & =-6 y+6 \\
f_{x y}(x, y) & =0
\end{aligned}
$$

At no point does either f_{x} or f_{y} fail to exist, so we search for any point (x, y) for which $f_{x}(x, y)=f_{y}(x, y)=0$. This yields the system

$$
\left\{\begin{array}{l}
3 x^{2}+6 x=0 \\
3 y^{2}-6 y=0
\end{array}\right.
$$

The system has solutions $(0,0),(0,2),(-2,0)$, and $(-2,2)$. We construct a table:

(x, y)	$f_{x x}$	$f_{y y}$	$f_{x y}$	Φ	Conclusion
$(0,0)$	-6	6	0	-36	Saddle Point
$(0,2)$	-6	-6	0	36	Local Maximum
$(-2,0)$	6	6	0	36	Local Minimum
$(-2,2)$	6	-6	0	-36	Saddle Point

Below is a graph of a part of the surface containing the points of interest.

4 Integrate with respect to y first:

$$
\begin{aligned}
\iint_{R} x^{5} e^{x^{3} y} d A & =\int_{0}^{\ln 2} \int_{0}^{1} x^{5} e^{x^{3} y} d y d x=\int_{0}^{\ln 2} x^{2}\left(e^{x^{3}}-1\right) d x \\
& =\int_{0}^{\ln 2} x^{2} e^{x^{3}} d x-\int_{0}^{\ln 2} x^{2} d x=\frac{e^{\ln ^{3} 2}-1}{3}-\frac{\ln ^{3} 2}{3} \\
& =\frac{e^{\ln ^{3} 2}-1-\ln ^{3} 2}{3}
\end{aligned}
$$

5 We have

$$
\iint_{R} y^{2} d A=\int_{-1}^{1} \int_{-x-1}^{2 x+2} y^{2} d y d x=\int_{-1}^{1} 3(x+1)^{3} d x=\left.\frac{3}{4}(x+1)^{4}\right|_{-1} ^{1}=12 .
$$

6 Area is

$$
\iint_{R} d A=\int_{0}^{\ln 2} \int_{0}^{e^{x}} d y d x=\int_{0}^{\ln 2} e^{x} d x=e^{\ln 2}-e^{0}=1
$$

7 The sketch of R in the $x y$-plane is below. The region

$$
S=\{(r, \theta): 0 \leq r \leq 5 \text { and } \pi \leq \theta \leq 2 \pi\}
$$

in the $r \theta$-plane is such that $T_{\text {pol }}(S)=R$, and therefore

$$
\begin{aligned}
\iint_{R} 2 x y d A & =\iint_{S} 2(r \cos \theta)(r \sin \theta) r d A=\int_{\pi}^{2 \pi} \int_{0}^{5} 2(r \cos \theta)(r \sin \theta) r d r d \theta \\
& =\int_{\pi}^{2 \pi} \int_{0}^{5} 2 r^{3} \cos \theta \sin \theta d r d \theta=\int_{\pi}^{2 \pi} \cos \theta \sin \theta\left[\frac{1}{2} r^{4}\right]_{0}^{5} d \theta \\
& =\frac{625}{2} \int_{\pi}^{2 \pi} \cos \theta \sin \theta d \theta=\frac{625}{4} \int_{\pi}^{2 \pi} \sin (2 \theta) d \theta=0 .
\end{aligned}
$$

8 The height function is

$$
h(x)=\left(27-x^{2}-2 y^{2}\right)-\left(2 x^{2}+y^{2}\right)=27-3 x^{2}-3 y^{2},
$$

while the region of integration R will be the region in the $x y$-plane enclosed by the curve that is the projection onto $z=0$ of the curve of intersection of the paraboloids. This curve is given by

$$
2 x^{2}+y^{2}=27-x^{2}-2 y^{2}
$$

or $x^{2}+y^{2}=9$, which is a circle with center $(0,0)$ and radius 3 , and so in polar coordinates

$$
R=\{(r, \theta): 0 \leq \theta \leq 2 \pi, \quad 0 \leq r \leq 3\}
$$

The volume of the solid is

$$
\begin{aligned}
\mathcal{V} & =\iint_{R} h=\int_{0}^{2 \pi} \int_{0}^{3}\left(27-3 r^{2} \cos ^{2} \theta-3 r^{2} \sin ^{2} \theta\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{3}\left(27 r-3 r^{3}\right) d r d \theta=\frac{243}{2} \pi
\end{aligned}
$$

