Math 242 Exam \#2 Key (Fall 2018)

1 For $p_{0}=(1,1,0), q_{0}=(-2,8,4), r_{0}=(1,2,3)$, we have $\overrightarrow{p_{0} q_{0}}=\langle-3,7,4\rangle$ and $\overrightarrow{p_{0} r_{0}}=\langle 0,1,3\rangle$. Now,

$$
\begin{aligned}
\mathbf{n} & =\overrightarrow{p_{0} q_{0}} \times \overrightarrow{p_{0} r_{0}}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-3 & 7 & 4 \\
0 & 1 & 3
\end{array}\right|=\left|\begin{array}{ll}
7 & 4 \\
1 & 3
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
-3 & 4 \\
0 & 3
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
-3 & 7 \\
0 & 1
\end{array}\right| \mathbf{k} \\
& =17 \mathbf{i}+9 \mathbf{j}-3 \mathbf{k}=\langle 17,9,-3\rangle
\end{aligned}
$$

so if $p=(x, y, z)$, then the equation of the plane is given by

$$
\mathbf{n} \cdot \overrightarrow{p_{0} p}=\langle 17,9,-3\rangle \cdot\langle x-1, y-1, z\rangle=0
$$

or $17 x+9 y-3 z=26$.

2 We have planes $P: x+2 y-3 z=1$ and $Q: x+y+z=2$. Now, the intersection of P and the plane $z=0$ is the set of points on the line $\ell_{0}: x+2 y=1$, and the intersection of Q and $z=0$ is the line $\ell_{0}^{\prime}: x+y=2$. So the point that is an element of $\ell_{0} \cap \ell_{0}^{\prime}$ must be a point in $P \cap Q$. We find this point by finding the solution to the system

$$
\left\{\begin{array}{l}
x+2 y=1 \\
x+y=2
\end{array}\right.
$$

which is $(3,-1)$. Thus $(3,-1,0) \in P \cap Q$ (since we're on the plane $z=0$).
Next, the intersection of P and the plane $z=1$ is the line $\ell_{1}: x+2 y=4$, and the intersection of Q and $z=1$ is the line $\ell_{1}^{\prime}: x+y=1$. Again, a point in $\ell_{1} \cap \ell_{1}^{\prime}$ is a point in $P \cap Q$. The system

$$
\left\{\begin{array}{l}
x+2 y=4 \\
x+y=1
\end{array}\right.
$$

has solution $(-2,3)$, and thus $(-2,3,1) \in P \cap Q$ (recall we're now on the plane where z is 1).
So the line of intersection for P and Q contains points $r_{0}(3,-1,0)$ and $r_{1}(-2,3,1)$. Let $\mathbf{v}=\overrightarrow{r_{0} r_{1}}=\langle-5,4,1\rangle$. An equation for the line is thus

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}=\langle 3,-1,0\rangle+t\langle-5,4,1\rangle
$$

3 Domain of F is

$$
\left\{(x, y): x \geq 0 \text { and } 1-x^{2}-y^{2} \geq 0\right\}=\left\{(x, y): x \geq 0 \text { and } x^{2}+y^{2} \leq 1\right\}
$$

which is the right half of the closed disc of radius 1 centered at $(0,0)$. Since F is a combination of radical functions, this is where F is continuous.

4 The level curve $z=1$ has equation $1=\sqrt{x^{2}+4 y^{2}}$, which implies

$$
x^{2}+\frac{y^{2}}{1 / 4}=1
$$

an ellipse. The level curve $z=2$ has equation $2=\sqrt{x^{2}+4 y^{2}}$, which implies

$$
\frac{x^{2}}{4}+y^{2}=1
$$

also an ellipse. Graph is below.

5 The limit becomes

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}+1}-1} \cdot \frac{\sqrt{x^{2}+y^{2}+1}+1}{\sqrt{x^{2}+y^{2}+1}+1}\right)=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)\left(\sqrt{x^{2}+y^{2}+1}+1\right)}{x^{2}+y^{2}} \\
& =\lim _{(x, y) \rightarrow(0,0)}\left(\sqrt{x^{2}+y^{2}+1}+1\right)=\sqrt{0^{2}+0^{2}+1}+1=2
\end{aligned}
$$

6 First approach $(0,0)$ on the path $x=y$, so limit becomes

$$
\lim _{x \rightarrow 0} \frac{x^{3} \cos x}{x^{2}+x^{4}}=\lim _{x \rightarrow 0} \frac{x \cos x}{1+x^{2}}=\frac{0 \cos 0}{1+0^{2}}=0 .
$$

Now approach $(0,0)$ on the path $x=y^{2}$, so the limit becomes

$$
\lim _{y \rightarrow 0} \frac{y^{4} \cos y}{2 y^{4}}=\lim _{y \rightarrow 0} \frac{\cos y}{2}=\frac{\cos 0}{2}=\frac{1}{2} .
$$

The limits don't agree, so the original limit cannot exist by the Two-Path Test.

7a We have

$$
g_{x}(x, y)=\ln \left(x^{2}+y^{2}\right)+\frac{2 x^{2}}{x^{2}+y^{2}} \quad \text { and } \quad g_{y}(x, y)=\frac{2 x y}{x^{2}+y^{2}}
$$

7b We have

$$
h_{z}(x, y, z)=-3 \sin (x+2 y+3 z) \quad \text { and } \quad h_{z y}(x, y, z)=-2 \cos (x+2 y+3 z)
$$

8a Along the path $y=x$ the limit becomes

$$
\lim _{(x, x) \rightarrow(0,0)}-\frac{x^{2}}{x^{2}+x^{2}}=\lim _{(x, x) \rightarrow(0,0)}-\frac{1}{2}=-\frac{1}{2},
$$

which implies that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \neq f(0,0)=0
$$

and therefore f is not continuous at $(0,0)$.

8b By an established theorem, since f is not continuous at $(0,0)$ it cannot be differentiable at $(0,0)$.

8c By definition we have

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0}(0)=0 .
$$

Thus, even though f is not differentiable at $(0,0)$, it can have partial derivatives at $(0,0)$.

9 Here $w(t)=f(x, y)$ with $f(x, y)=\cos (2 x) \sin (3 y), x=x(t)=t / 2$ and $y=y(t)=t^{4}$. By Chain Rule 1 in the notes,

$$
\begin{aligned}
w^{\prime}(t) & =f_{x}(x, y) x^{\prime}(t)+f_{y}(x, y) y^{\prime}(t)=-\sin (2 x) \sin (3 y)+12 t^{3} \cos (2 x) \cos (3 y) \\
& =-\sin (t) \sin \left(3 t^{4}\right)+12 t^{3} \cos (t) \cos \left(3 t^{4}\right)
\end{aligned}
$$

10a $\quad \nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle=\left\langle-9 x^{2}, 2\right\rangle$

10b Direction of steepest ascent is

$$
\frac{\nabla f(1,2)}{|\nabla f(1,2)|}=\frac{\langle-9,2\rangle}{\sqrt{(-9)^{2}+2^{2}}}=\frac{1}{\sqrt{85}}\langle-9,2\rangle,
$$

and direction of steepest descent is

$$
-\frac{1}{\sqrt{85}}\langle-9,2\rangle .
$$

10c Let C_{0} be given by $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ for $t \geq 0$. Then for any t the tangent vector to C_{0} at the point $(x(t), y(t))$, which is $\mathbf{r}^{\prime}(t)$, must be in the direction of $-\nabla f(x, y)=\left\langle 9 x^{2}(t),-2\right\rangle$. Therefore we set

$$
\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\left\langle 9 x^{2}(t),-2\right\rangle,
$$

from which we obtain the differential equations $x^{\prime}=9 x^{2}$ and $y^{\prime}=-2$. The first equation can be solved by the Method of Separation of Variables:

$$
\frac{d x}{d t}=9 x^{2} \Rightarrow \frac{d x}{9 x^{2}}=d t \Rightarrow \int \frac{1}{9 x^{2}} d x=\int d t \Rightarrow-\frac{1}{9 x}=t+K \Rightarrow x(t)=-\frac{1}{9 t+K}
$$

with arbitrary constant K. The equation $y^{\prime}=-2$ easily gives $y(t)=-2 t+K^{\prime}$ for arbitrary constant K^{\prime}. Since C is given to start at $(1,2,3)$, we must have C_{0} start at $(1,2)$; that is, $\mathbf{r}(0)=\langle x(0), y(0)\rangle=\langle 1,2\rangle$. From $-1 /(9 \cdot 0+K)=x(0)=1$ we obtain $K=-1$, and from $-2(0)+K^{\prime}=y(0)=2$ we obtain $K^{\prime}=2$. Therefore an equation for C_{0} is

$$
\mathbf{r}(t)=\left\langle\frac{1}{1-9 t}, 2-2 t\right\rangle, \quad t \geq 0
$$

11 First get the unit vector in the direction of $\langle 1, \sqrt{3}\rangle$:

$$
\mathbf{u}=\frac{\langle 1, \sqrt{3}\rangle}{2}=\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle
$$

Now,

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}=\left\langle e^{x} \sin y, e^{x} \cos y\right\rangle \cdot\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle=\frac{e^{x} \sin y}{2}+\frac{\sqrt{3} e^{x} \cos y}{2}
$$

and so

$$
D_{\mathbf{u}} f(0, \pi / 4)=\frac{e^{0} \sin (\pi / 4)}{2}+\frac{\sqrt{3} e^{0} \cos (\pi / 4)}{2}=\frac{1 / \sqrt{2}}{2}+\frac{\sqrt{3} \cdot 1 / \sqrt{2}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4} .
$$

