## MATH 242 EXAM #5 KEY (FALL 2016)

1 The vector field  $\mathbf{F}(x,y,z) = \nabla(xyz)$  is conservative, with potential function  $\varphi(x,y,z) = xyz$ . The Fundamental Theorem of Line Integrals gives

$$\int_C \nabla(xyz) \cdot d\mathbf{r} = \varphi(\mathbf{r}(\pi)) - \varphi(\mathbf{r}(0)) = \varphi(-1,0,1) - \varphi(1,0,0) = 0 - 0 = 0.$$

**2** Get R be the region enclosed by the square C (which includes the points on C itself). Let I be the given line integral. By Green's Theorem,

$$I = \iint_{R} \left[ \partial_{x}(x^{3} + xy) - \partial_{y}(2y^{2} - 2x^{2}y) \right] dA = \iint_{R} (5x^{2} - 3y) dA$$
$$= \int_{-1}^{1} \int_{-1}^{1} (5x^{2} - 3y) dx dy = \int_{-1}^{1} \left( \frac{10}{3} - 6y \right) dy = \frac{20}{3}.$$

**3a** Setting  $\mathbf{F} = \langle f, g, h \rangle$ , we have

$$(\operatorname{div} \mathbf{F})(x, y, z) = (\nabla \cdot \mathbf{F})(x, y, z) = \partial_x f(x, y, z) + \partial_y g(x, y, z) + \partial_z h(x, y, z) = 2y + 12xz^2.$$

**3b** Again setting  $\mathbf{F} = \langle f, g, h \rangle$ ,

$$(\operatorname{curl} \mathbf{F})(x, y, z) = \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ f & g & h \end{pmatrix}$$

$$= \begin{vmatrix} \partial_y & \partial_z \\ g & h \end{vmatrix} \mathbf{i} - \begin{vmatrix} \partial_x & \partial_z \\ f & h \end{vmatrix} \mathbf{j} + \begin{vmatrix} \partial_x & \partial_y \\ f & g \end{vmatrix} \mathbf{k}$$

$$= (\partial_y h - \partial_z g) \mathbf{i} - (\partial_x h - \partial_z f) \mathbf{j} + (\partial_x g - \partial_y f) \mathbf{k}$$

$$= \langle h_y - g_z, f_z - h_x, g_x - f_y \rangle = \langle 0 - 0, 4z^3 - 4z^3, 2x - 2x \rangle$$

$$= \langle 0, 0, 0 \rangle = \mathbf{0}.$$

**4a** For each  $z \in [0, 8]$  we have  $x^2 + y^2 = z/2$ , a circle of radius  $\sqrt{z/2}$  with center on the z-axis. Such a circle we may parametrize by

$$\left\langle \sqrt{\frac{z}{2}}\cos t, \sqrt{\frac{z}{2}}\sin t \right\rangle, \quad t \in [0, 2\pi].$$

Let z = v and t = u. Then

$$\mathbf{r}(u,v) = \left\langle \sqrt{\frac{v}{2}} \cos u, \sqrt{\frac{v}{2}} \sin u, v \right\rangle, \quad (u,v) \in [0, 2\pi] \times [0, 8]$$

is a parametrization of the surface  $\Sigma$ .

Alternatively we may replace v with  $2v^2$  to obtain the parametrization

$$\mathbf{r}(u,v) = \langle v\cos u, v\sin u, 2v^2 \rangle, \quad (u,v) \in [0,2\pi] \times [0,2]$$
 (1)

(note the correspondingly altered domain).

4b Using the parametrization (1) above, so that

$$\mathbf{r}_u(u,v) = \langle -v\sin u, v\cos u, 0 \rangle$$
 and  $\mathbf{r}_v(u,v) = \langle \cos u, \sin u, 4v \rangle$ ,

we find the area of  $\Sigma$  to be

$$\mathcal{A} = \iint_{\Sigma} dS = \iint_{R} \|(\mathbf{r}_{u} \times \mathbf{r}_{v})(u, v)\| dA = \iint_{R} v\sqrt{16v^{2} + 1} dA$$
$$= \int_{0}^{2} \int_{0}^{2\pi} v\sqrt{16v^{2} + 1} du dv = \int_{0}^{2} 2\pi v\sqrt{16v^{2} + 1} dv = \frac{\pi}{24} (65\sqrt{65} - 1).$$

**5** The boundary of  $\Sigma$ , denoted by  $\partial \Sigma$ , is the set of points (x, y, z) for which  $x^2 + y^2 + z^2 = 25$  and x = 3. This is the circle  $y^2 + z^2 = 16$  at x = 3, and a parametrization for  $\partial \Sigma$  that is consistent with the orientation of  $\Sigma$  is

$$\mathbf{r}(t) = \langle 3, 4\cos t, 4\sin t \rangle, \quad t \in [0, 2\pi].$$

By Stokes' Theorem,

$$\iint_{\Sigma} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

$$= \int_{0}^{2\pi} \langle 8\cos t, -4\sin t, 3 - 4\cos t - 4\sin t \rangle \cdot \langle 0, -4\sin t, 4\cos t \rangle dt$$

$$= \int_{0}^{2\pi} (12\cos t + 16\sin^{2} t - 16\cos^{2} t - 16\sin t\cos t) dt$$

$$= \int_{0}^{2\pi} (12\cos t - 16\cos 2t - 16\sin t\cos t) dt = 0.$$

6 Let  $D_1$  be the region in the first octant between the planes z = 4 - x - y and z = 0, and let  $D_2$  be the region in the first octant between the planes z = 2 - x - y and z = 0. Then  $D = D_1 - D_2$ , and since

$$\iiint_{D_1} \nabla \cdot \mathbf{F} \, dV = \int_0^4 \int_0^{4-x} \int_0^{4-x-y} (2x - 2y + 2z) \, dz \, dy \, dx = \frac{64}{3}$$

and

$$\iiint_{D_2} \nabla \cdot \mathbf{F} \, dV = \int_0^2 \int_0^{2-x} \int_0^{2-x-y} (2x - 2y + 2z) \, dz \, dy \, dx = \frac{4}{3},$$

the flux across the boundary of D is

$$\iiint_D \nabla \cdot \mathbf{F} \, dV = \iiint_{D_1} \nabla \cdot \mathbf{F} \, dV - \iiint_{D_2} \nabla \cdot \mathbf{F} \, dV = \frac{64}{3} - \frac{4}{3} = 20.$$